A Silicon-Metal Nanocomposite for High Capacity Lithium-Ion Batteries

Home / Articles / External Non-Government

id44287_0

September 7, 2016 | Originally published by Date Line: September 7 on

A research group led by Naoki Fukata, a Leader of Nanostructured Semiconducting Materials Group at the International Center for Materials Nanoarchitectonics (MANA), NIMS, and a research group at the Georgia Institute of Technology jointly developed an anode material for lithium (Li)-ion rechargeable batteries by forming nanoparticles made of silicon (Si)-metal composites on metal substrates. The resulting anode material had high capacity—almost twice as high as conventional materials—and a long cycle life. These results will lead to the development of higher-capacity, longer-life anode materials for Li-ion rechargeable batteries this study as a new anode material for Li-ion rechargeable batteries.At present, carbon-based materials are used as anodes for Li-ion rechargeable batteries, and their capacities are up to 370 mAh/g. In theory, their capacities can be increased by more than 10 times to 4,200 mAh/g, provided that pure Si is used as an anode material.

The appearance of external hyperlinks on this DTIC website does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products or services contained therein. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the opinions of the United States DoD.

Focus Areas