3D-Printed Robot Is Hard at Heart, Soft On the Outside

3D-Printed Robot Is Hard at Heart, Soft On the Outside image
July 10, 2015 | Source: Phys.Org

Engineers at Harvard University and the University of California, San Diego, have created the first robot with a 3D-printed body that transitions from a rigid core to a soft exterior. The robot is capable of more than 30 untethered jumps and is powered by a mix of butane and oxygen. Researchers describe the robot's design, manufacturing and testing in the July 10 issue of Science magazine.

"We believe that bringing together soft and rigid materials will help create a new generation of fast, agile robots that are more robust and adaptable than their predecessors and can safely work side by side with humans," said Michael Tolley, an assistant professor of mechanical engineering at UC San Diego, and one of the paper's co-lead authors with Nicholas Bartlett, a Ph.D. student at the Wyss Institute at Harvard, where the bulk of the work took place. Bartlett and Tolley designed, manufactured and tested the robot.

The idea of blending soft and hard materials into the robot's body came from nature, Tolley said. For example, certain species of mussels have a foot that starts out soft and then becomes rigid at the point where it makes contact with rocks. "In nature, complexity has a very low cost," Tolley said. "Using new manufacturing techniques like 3D printing, we're trying to translate this to robotics."