Electronic Device Quantum Fingerprint is Impossible to Replicate

Electronic Device Quantum Fingerprint is Impossible to Replicate image
November 27, 2015 | Source:

Could this be DOD's solution to counterfit electronic components?

A technique to authenticate the identity of electronic devices using quantum tunnelling has been developed by researchers in the UK. The idea takes a problem in quantum electronics – the extreme sensitivity of the energy levels of a quantum well to its height and breadth – and turns it into an opportunity for creating a unique "quantum fingerprint" that is impossible to forge.

The secure exchange of electronic information is a cornerstone of modern society and security technology must be improved continuously to stay one step ahead of criminals and hackers. Password encryption is known to be vulnerable to cyber-attack. Where possible, it is far more secure to store data on hardware that has an identifying mark or feature that is random and therefore impossible to clone – a hi-tech version of a key. These marking systems are called physically unclonable functions (PUFs), and several have already been developed using the laws of classical physics. For example, the speckle pattern produced when a laser is incident on a surface is invariant, so the same surface will produce the same speckle pattern repeatedly; and yet it is impossible even for the manufacturer to produce another surface that will produce the same pattern. Other examples of such PUFs are modes in silicon ring oscillators and states of static random-access memories.

Communities: