RAMBO: Researchers Fire 3D Printed Ammo from 3D Printed Grenade Launcher

RAMBO: Researchers Fire 3D Printed Ammo from 3D Printed Grenade Launcher
March 27, 2017 | Source: U.S. Army, asc.army.mil, 1 March 2017, Seung kook “Sunny” Burns and James Zunino

Researchers at the U.S. Army Armament Research, Development and Engineering Center (ARDEC) successfully fired the first grenade created with a 3-D printer from a grenade launcher that was produced the same way. This demonstration shows that additive manufacturing (commonly known as 3-D printing) has a potential future in weapon prototype development, which could allow engineers to provide munitions to Soldiers more quickly.

The printed grenade launcher, named RAMBO (Rapid Additively Manufactured Ballistics Ordnance), was the culmination of six months of collaborative effort by the U.S. Army Research, Development and Engineering Command (RDECOM), the U.S. Army Manufacturing Technology (ManTech) Program and America Makes, the national accelerator for additive manufacturing and 3-D printing.

RAMBO is a tangible testament to the utility and maturation of additive manufacturing. It epitomizes a new era of rapidly developed, testable prototypes that will accelerate the rate at which researchers’ advancements are incorporated into fieldable weapons that further enable our warfighters. Additive manufacturing (AM) is an enabling technology that builds successive layers of materials to create a three-dimensional object. Every component in the M203A1 grenade launcher, except springs and fasteners, was produced using AM techniques and processes. The barrel and receiver were fabricated in aluminum using a direct metal laser sintering (DMLS) process. This process uses high-powered precision lasers to heat the particles of powder below their melting point, essentially welding the fine metal powder layer by layer until a finished object is formed. Other components, like the trigger and firing pin, were printed in 4340 alloy steel, which matches the material of the traditional production parts.