HIGH-POWER RADIO FREQUENCY/MICROWAVE (HPM) DIRECTED-ENERGY WEAPONS (DEWs) AND THEIR EFFECTS

JOHN T. TATUM

Defense Systems Information Analysis Center Belcamp, MD <u>John.tatum@survice.com</u> (301) 963 9448

DSIAC is a DoD Information Analysis Center (IAC) sponsored by the Defense Technical Information Center (DTIC), with policy oversight provided by the Office of the Under Secretary of Defense (OUSD) for Research and Engineering (R&E). DSIAC is operated by the SURVICE Engineering Company.

Outline

- 1. What Are HPM DEWs?
- 2. What Can HPM DEWs do for the Warfighter?
- 3. How Are HPM Weapons Different Than High-Energy Lasers?
- 4. How Are HPM DEWs Different From Traditional Electronic Warfare (EW) Jammers?
- 5. How Are HPM DEWs Similar to, but Different From Nuclear-Generated Electromagnetic Pulse (NEMP)?
- 6. How Does HPM Couple Into a Target?
- 7. What Types of Effects Does It Cause?
- 8. How Do We Protect Our Systems Against HPM Pulses?
- 9. Summary
- 10. Questions?

High Power Radio Frequency/Microwave (HPM) Directed-Energy Weapons (DEWs)

Also Known as Electromagnetic (EM) Weapons, Radio Frequency (RF) Weapons, Non-Nuclear EM Pulse, Electronic–Bombs (E-Bombs), Etc.

	 Target Have Peak Effective Radiated Power of >100 MW or Radiated Energy >1 J per Pulse Range in Frequencies From HF/VHF/UHF to Millimeter Wave 		 Damage) "Unconventional Electronic Attack (UEA)"
--	--	--	---

								WAVE				visi	 BLE			
		/LF	<i></i>	<i>∭</i> <i>∭</i>	É ////VH	RADAR	BANDS	F	HF ///		NFRARED			ULTRA	VIOLET	
	(1)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u>alli ((11))</u>									
f	1 KHz	10 KHz	100 KHz	1 MHz	10 MHz	100 MHz	1 GHz	10 GHz	100 GHz	10 ¹² Hz	10 ¹³ Hz	10 ¹⁴ Hz	10 ¹⁵ Hz	10 ¹⁶ Hz	10 ¹⁷ Hz	10 ¹⁸ Hz
λ	300 km	30 km	3 km	300 m	30 m	3 m	300 mm	30 mm	3 mm	300 µm	30 µm	3 µm	300 nm	30 nm	3 nm	0.3 nm

Major Components of an HPM DEW

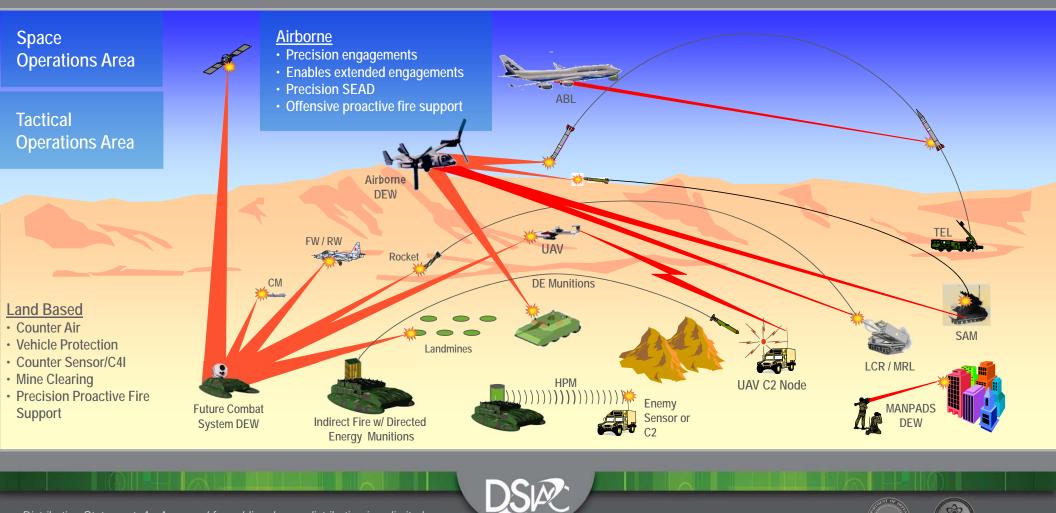
	H	IPM DEW	-	RF PROPAGATION	TARGET SYSTEM
 Prime Power Electrical Generator Explosives 	 Pulse Power Capacitive Inductive (Pulse-Forming Network) High-Power Switches Tubes Solid State 	RF Source Pulsed Continuous Wave (Narrow Band [NB] <10% Center Frequency) • Magnetron Tube • Traveling Wave Tube (TWT) Amp • Klystron Amp • Klystron Amp • Gyrotron et al. Transient Pulse (Wide Band [WB] >25%f) • Spark Gap • Electronic Switches	Antenna NB • High-Power Apertures • Higher Frequency • High Gain/Directivity • Well-Defined Pattern Off-bore Site WB • Dipole/Transverse EM Horn • Lower Frequency • Less Gain • Less-Defined Pattern	RF Port of Entry (POE) Coupling Path POE to Comp	

• Ferrite Lines

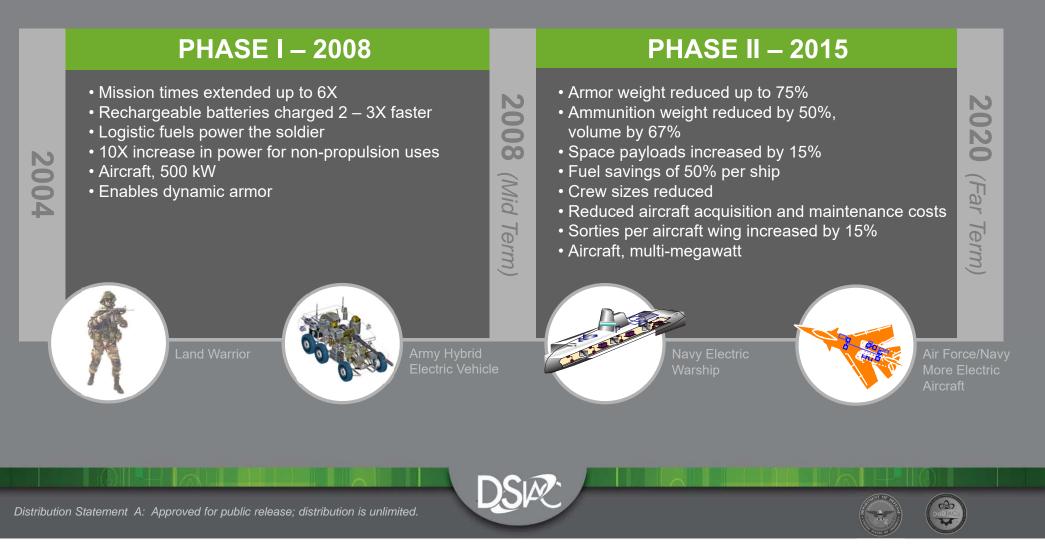
Distribution Statement A: Approved for public release; distribution is unlimited.

CAD DODIAC

What Can HPM DEWs Do for the Warfighter?

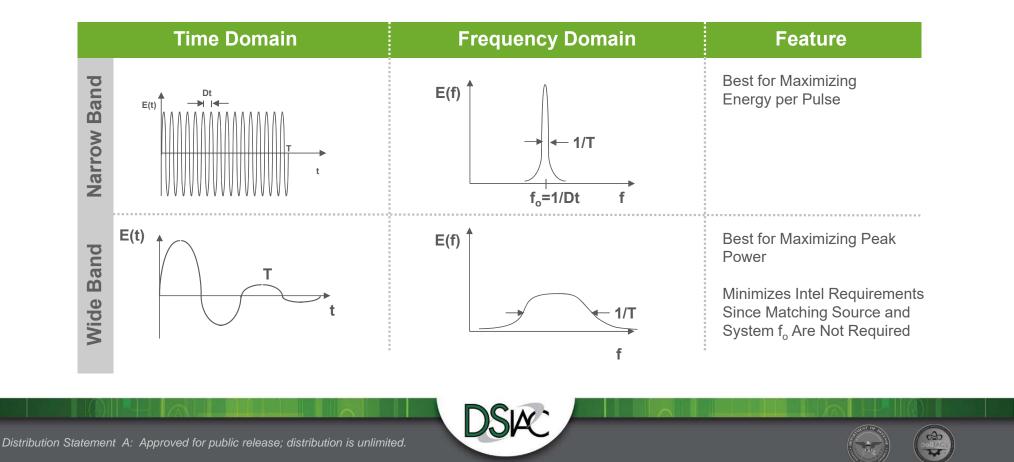

1 Ability to ENGAGE MULTIPLE TARGETS at the "Speed of Light" (Instantaneous Fly-out, No Lead Angle). However, Effect May Not Be Instantaneous. Dwell Time Is Important.	PRODUCE "SCALABLE EFFECTS" From Temporary to Permanent Based on Target and RF Directed-Energy (DE) Range.	3 HAVE "VERY DEEP MAGAZINES" — With Relatively Unlimited Number of "Low-Cost Ammo (DE Pulses)." Reduces Logistics and Associated Cost.
Provides HIGH PROBABILITY OF HIT Compared to Kinetic Energy Weapons and Lasers	5 Provides PLAUSIBLE DENIABILITY .	6 WORK AGAINST ELECTRONIC WEAPONS, Sensors, and Communication Systems (i.e., Force Multipliers).
7 Operation and Maintenance SIMILAR TO RADAR Systems.	8 Typically NON-LETHAL TO HUMANS. <i>Millimeter Waves Can Produce</i> <i>Temporary Pain, Crowd Control.</i>	9 RF Protection Is Easy Theoretically, but MAY BE VERY DIFFICULT IN PRACTICE.

Distribution Statement A: Approved for public release; distribution is unlimited.

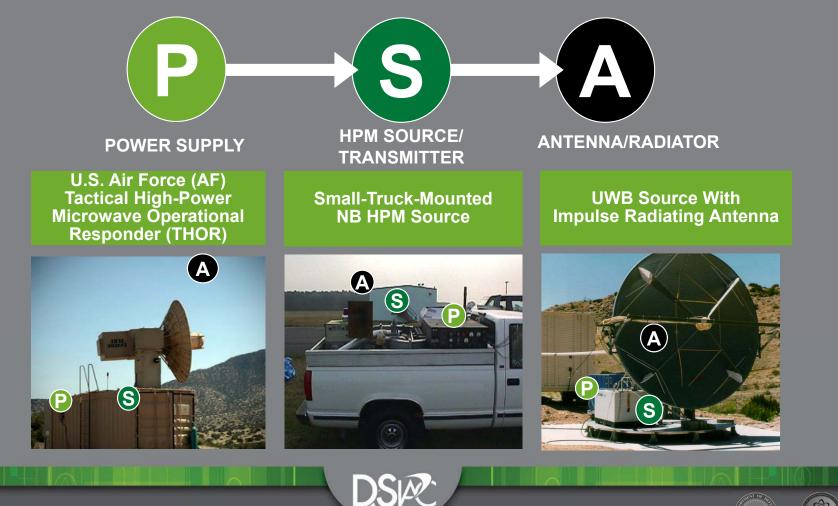


CAD DODIAC

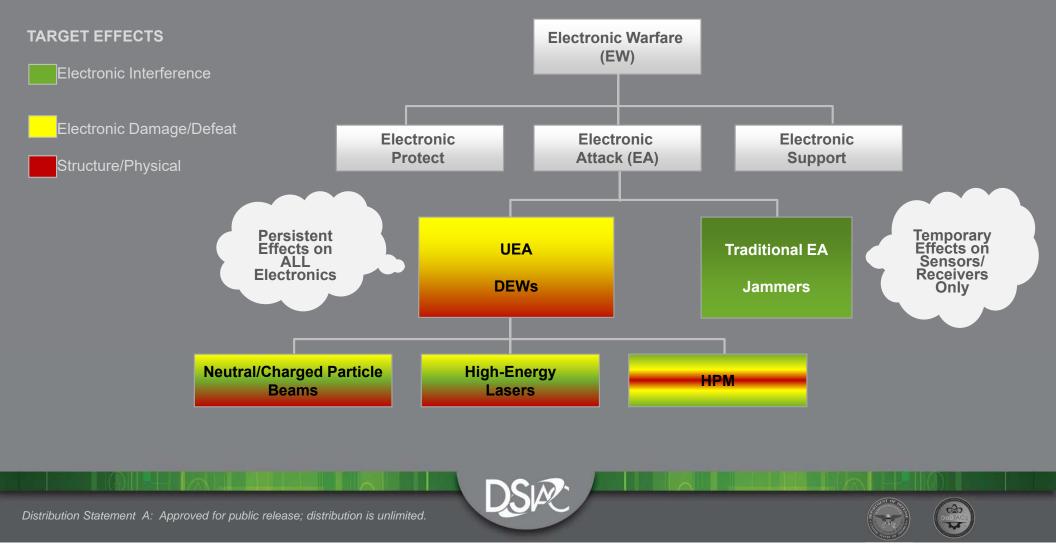
What Are Some Applications for Directed Energy Weapons?

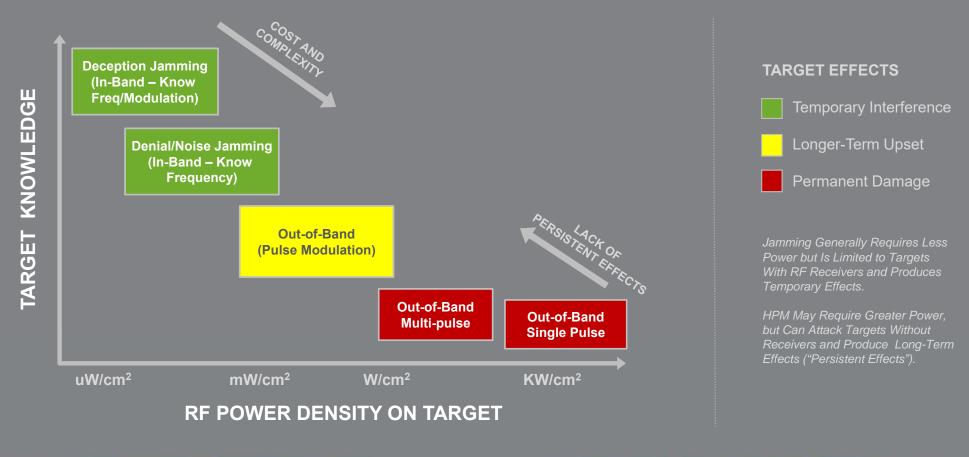


Power/Energy Technology Has Been an Enabler for DEWs?

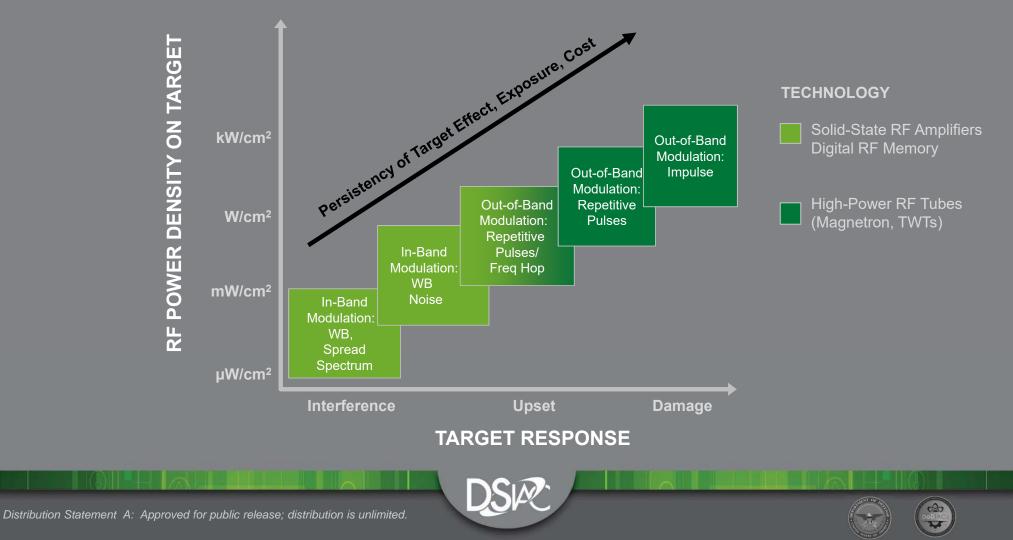


Types of HPM Sources


NB delivers burnout punch, while WB/ultra-wide band (UWB) can be repetitively pulsed at high rates for upset since its pulses contain little energy.


Examples of HPM DEW Systems

HPM DEWs Provide Unconventional Electronic Attack (UEA)



EA Technology

How Does HPM Differ From NEMP?

- NEMP Is Single Shot, While HPM May Be Repetitively Pulsed.
- 2 Frequency Regimes Differ So That Resonant Coupling of Energy Into a Target Occurs at Different Characteristic Lengths.

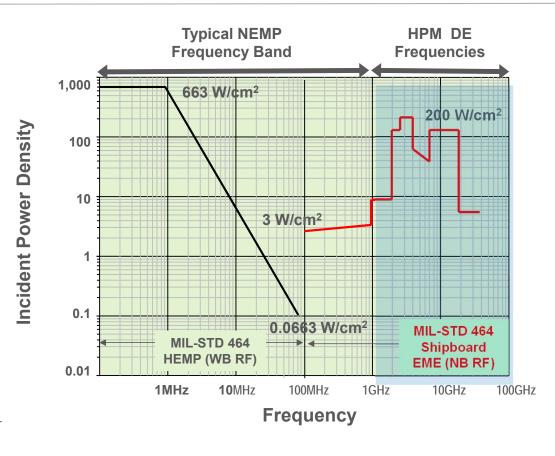
	TYPICAL FREQUENCIES	CHARACTERISTIC LENGTH
NEMP	DC to 100 MHz	3 m or more
WB	~30 MHz to	~10 cm to
RF	~3 GHz	~10 m
NB	~1 GHz	Up to
HPM	and up	30 cm

How Does HPM Differ From NEMP?

3

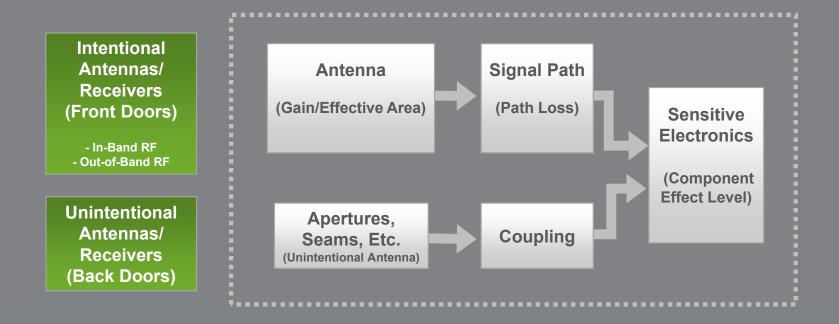
ASSESSMENT SIMILARITIES:

- Both Address Complex RF Coupling Into Targets and Require Numerous Variables to Describe Effect Levels.
- Limited Facilities and Test Objects Sometimes Force Reliance on Low-Power Tests and Analysis.

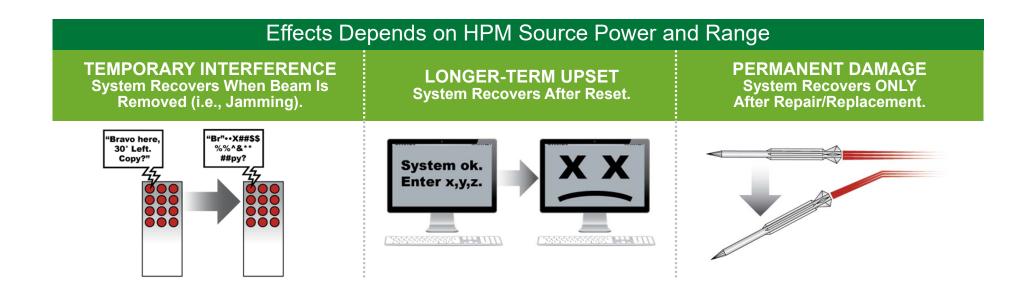


ASSESSMENT DIFFERENCES:

- The NEMP Threat Is Usually an "Official Threat" So That Some Variables Are Constrained. There Is No Well-Defined HPM Threat; Numerous Parametric Excursions Are Required.
- Systems Within a Given Class Are More Similar on NEMP Length Scales.
- Computer Models of Complex Systems Must Include More Detail for NB HPM.


NEMP vs. HPRF/M

Reference: Military Standard 464 - DoD Interface Standard – Electromagnetic Environmental Effects Requirements for Systems, March 18, 1997



How Does HPM Couple Into Targets?

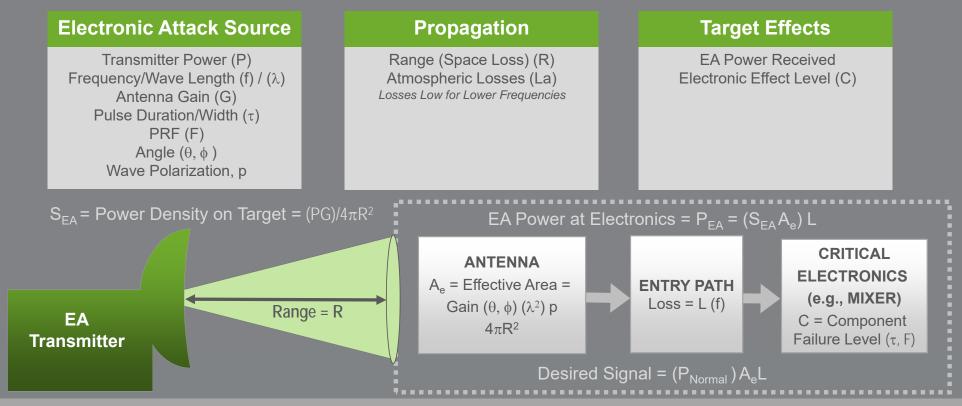
RF Energy Can Enter Target via Intentional Antennas [i.e., "Front Doors"] or via Unintentional Antennas (i.e., Apertures, Cables, etc.) [i.e., "Back Doors"].

HPM DEW Effects on Electronics

Effects Are Statistical Quantities Expressed in Terms of Probability of Effect (i.e., Upset/Damage).

Types of HPM Effects Experiments

DIRECT-INJECTION EXPERIMENTS


- Directly Couple Selected HPM
 Waveform Into Target
- Establish Upset and Damage Thresholds
- Evaluate Pulse Width and Pulse Rep Frequency (PRF) Effectiveness
- Determine Optimum Frequency and Bandwidth for Selected Asset

FREE-FIELD/CHAMBER EXPERIMENTS

- Radiate Target in RF Chamber or Outdoors
- Use HPM Source With Specified Parameters and Diagnostics
- Observe/Measure Target Responses vs. Incident Energy

Electronic Attack Scenario and Key Parameters

Difference Between Jamming and Persistent Effects Is:Probability of Jamming: Probability { $P_{EA} > Desired Signal$ }Probability of RF DE Damage: Probability { $P_{EA} > C$ } = Probability of { $(S_{EA} A_e L) > C$ }

Target Effects and Downtime

RF DE Can Produce Effects That Range From Interference to Temporary Disruption to Damage of Target Electronics.

FAILURE MODE	POWER NEEDED	WAVE SHAPE NEEDED	RECOVERY PROCESS	DOWNTIME
Interference or Analog Upset	Low	Repetitive Pulse or Continuous	Self-Recovery After Exposure Stops	Seconds
Digital Upset	Medium	Short Pulse Single or Repetitive	Operator Intervention	Minutes
Memory Corruption	Medium	Short Pulse Repetitive	Maintenance Intervention	Hours
Damage High		Short Pulse (UWB) Longer Pulse (Narrow)	Maintenance Intervention	Days

GENERAL OBSERVATIONS

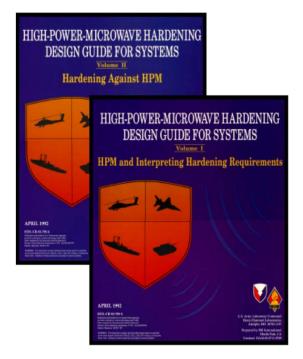
- Mission Impact of Failure Depends on When Exposure Occurs.
- Damage Mode Is Most Lethal but Hardest to Implement.
- Digital Upset or Memory Corruption Can Be Lethal and Is Easier to Implement.

High Power Radio Frequency/ Microwave Protection Guides

HPRF/M Hardening Design Guide for Systems

• HDL-CR-92-709-5, U.S. Army Research Laboratory (ARL), April 1992

DTRA/JAYCOR Has Produced JEM RF Code With Electronic Version of Hardening Design Guide (AF Research Laboratory [AFRL] Is Now Model Manager)


• Estimates Voltage Induced vs. Component Strength


Military Systems:

- Army Hardening Demonstration on IFF (ARL)
- AF Hardening Demonstration F-16 and LANTIRN (AFRL/DE)

Commercial Systems

- Aircraft (e.g., Cooperative Research and Development Agreement with Boeing for Test Chamber)
- Computers

Summary

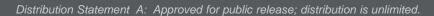
HPM DEW Provides Warfighters With:

- High Probability of Hit
- "Speed of Light" Engagements for Multiple Targets in Near-All-Weather Conditions
- Scalable Target Effects (Temporary to Permanent Non-Lethal to Lethal)
- Relatively Low Cost Per Shot

HPM Provides Additional Electronic Attack/Warfare Capability

- Out-of-Band Attack on Targets With and Without Receivers
- Possibility to Attack Target Classes Requires Little-to-No Target Information
- Long-Term to Permanent Effects (Damage)

Effects Levels Depend Upon HPM DE Source/Target Parameters


• Effect Levels Typically Measured Over Limited Parameter Space Due to Source Availability

Impact of Effects on Mission May Be Difficult to Determine

Protection/Countermeasures Technically Possible – May NOT be Easy

- RF Protection Designed-In 1% to 15% Total System Cost
- Retro-Fit Hardening 20% to 90% of Total System Cost
- "Pay Now or Pay Later"

