

Electromagnetic (EM) Shielding With Composite Materials

Presented by: **Harry R. Luzetsky** SURVICE Engineering SME Composites and Survivability (M): 215-805-3910 Email: rick.Luzetsky@survice.com

4695 Millennium Drive Belcamp, MD 21017-1505 dsiac.org Office: 443.360.4600 Fax: 410.272.6763 Email: contact@dsiac.org

Distribution A: Approved for Public Release Distribution Unlimited

Overview

- What are potential EM threats to which platforms are exposed?
- Current EM shielding approach for electronics and electrical systems
- What types of EM shielding are possible in composites?
- Multifunctional materials
- Manufacturing and fabrication concerns
- Repairability and maintainability aspects
- Future direction

EM Threats

- EM environments challenge electronics.
 - Range from natural to man-made.
 - EM causes upset and hard failures.
- EM threats are multifrequency.
 - Various shielding levels are required.

Threat Type	Frequency Range	EM Shielding Range
EMI/EMC	9 kHz – 40 GHz	60 – 100 dB
EMP	100 MHz – 100 GHz	80 – 120 dB
HPM	1 GHz – 35 GHz	100 – 140 dB

EMI = EM interference; EMC = EM compatibility; EMP = EM pulse; HPM = high-power microwave.

• Emerging threats and electronics may require more.

Images Source: [1] Luzetsky, Harry R., "Multifunctional Composite for Electromagnetic Shielding," CEMA Presentation May 3-4 2022.

EM Threats

- Origination of threats
 - EM threats characterized as natural, civil, and military
 - $\circ~$ Defines magnitude and influences protection requirements

Threat Type	Natural	Civil	Military
EMI/EMC	Lightning, Electrostatic Discharge, Solar Flares, Auroras	Communication (Cell Towers), Generators, Power Supplies, High- Voltage Electrical Transmission Lines	Jammers, Installed Electrical Equipment, Radios
EMP	Lightning EMP, Electrostatic Discharge, Meteoric EMP, Coronal Mass Ejection	Electric Circuity Switching, Electric Motors, Gasoline Ignition Systems, Continual Switching of Digital Electric, Power Line Surges	Nuclear EMP (NEMP), Non- Nuclear EMP (NNEMP), High-Altitude EMP (HEMP)
НРМ	Super Nova	High-Power Radars With Relativistic Klystron Amplifier	Backward Wave Oscillator, Directed-Energy Weapon

EM Threats

- EM threats are real and fielded.
 - Russian
 - Krasukha-4 mobile EW system
 - Operational since 2014/kill electronics of Israeli F-35
 - II-22PP electronic warfare (EW) aircraft
 - Operational in 2018
 - Chinese
 - Mobile ground vehicles
 - 2018 South China Sea reefs
 - o 16D EW Jet
 - Signal jammers/disable radars, missile guidance, and wireless communications

Images Source: [2] "Multifunctional Structural Composite with Integrated Electromagnetic Shielding" Presented at the AHS International 73rd Annual Forum & Technology Display, Fort Worth, Texas, USA, May 9–11, 2017. Copyright © 2017 by AHS International, Inc. All rights reserved. Harry R. Luzetsky, Martha A. Klein, Graham Ostrander

- Shielding effectiveness (SE) definition
 - Ratio of radiated power received without the barrier to the power received with the barrier
 - Measurement units in decibels (dB)
 - SE contributors
 - Reflection from the surface due to the impedance mismatch between the two mediums and attenuation by absorption loss within the barrier.
 - Re-reflection at the second barrier-to-air surface and again at the first surface, with some absorption loss each time the wave traverses the barrier thickness.
 - Re-reflected component usually reduces SE by adding power to the output. The reduction may be significant if the absorption losses are low.

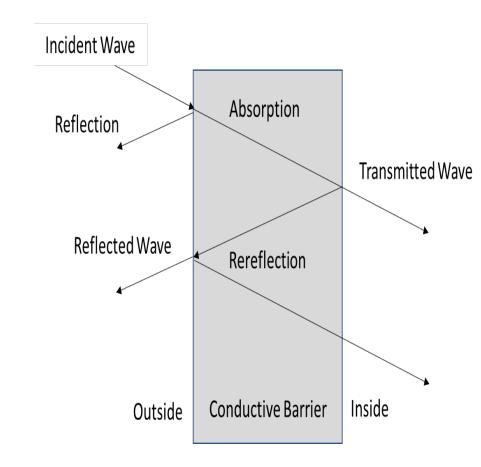
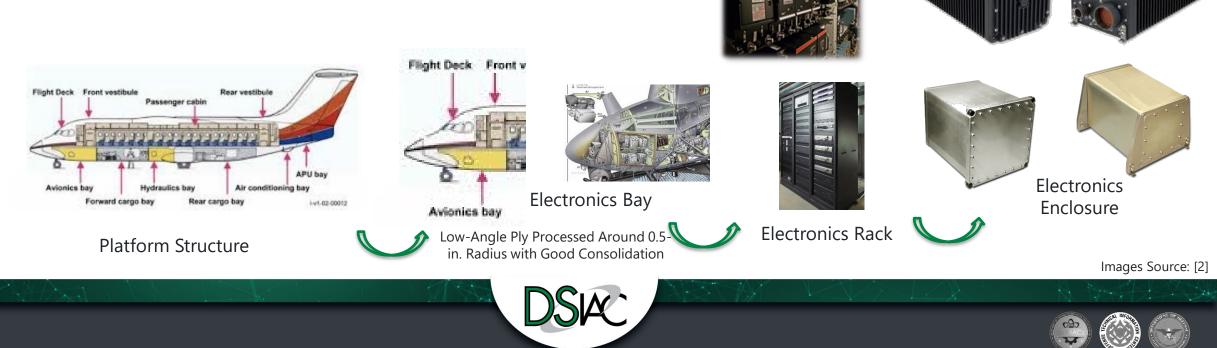


Image Source: Author generated.


- Barrier characteristics of impacting shielding
 - Barrier thickness
 - Thin shields have internal reflections that reduce SE
 - Electrical conductivity
 - Magnetic permeability
- Construction of enclosures
 - Shaping
 - Penetrations
 - Minimize potential leakage points
 - Seals
 - Elastomers with conductive fillers
 - Platform integration

- EM shielding platform integration
 - Defines enclosure configuration
 - Accommodates heat sinks, cooling, and venting.
 - o Isolates electronics into a single area.
 - Electronics platforms and racks
 - Most efficient configuration is a sealed box.
 - Minimizes penetrations and sharp corners

- Types of shielding materials
 - Metals (typically copper and aluminum)
 - o Includes coatings and plating
 - Carbon allotropes used as fillers (forms of carbon) in polymers, ceramics, cement, and metals
 - Exfoliated graphite, graphene, carbon fibers, and carbon nanotubes
 - Filler materials due to strength and conductivity
 - Operate through multiple reflection mechanisms
 - Intrinsically conducting polymers (ICPs)
 - Special conducting polymers
 - Conduct electricity between atoms due to conjugated bonds (alternating single and double bonds)
 - Used as component to composite with metal nanoparticles and carbon filaments

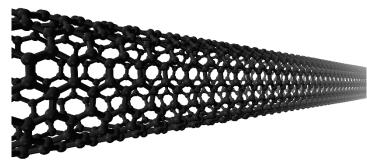
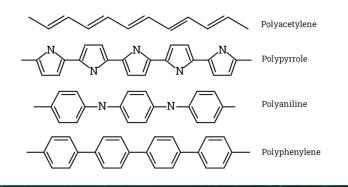
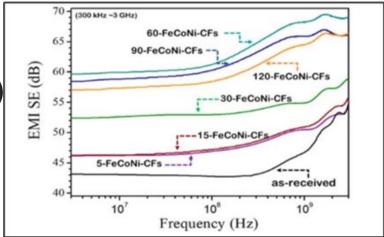
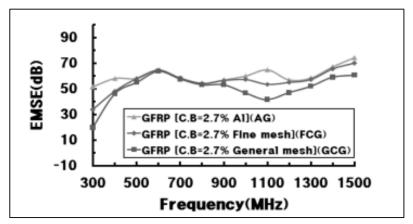
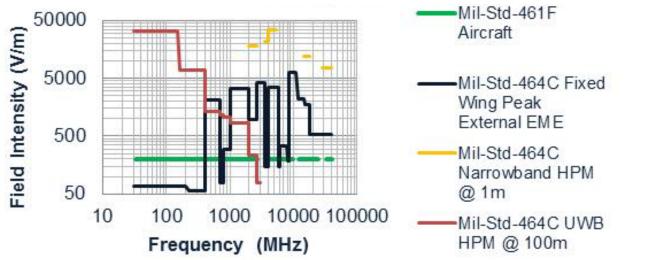



Image Source: Wikimedia Commons


Alternating Single and Double Bonds of ICPs



- EM shielding solutions are limited.
 - Metal enclosures (~1/8-inch-thick aluminum [AI])
 - o Greater than 80 dB; 10 MHZ-100 GHz
 - Heavy approach with limited application
 - Nonmetallic enclosures
 - More weight effective than metals
 - Levels between 30 and 70 dB (DSIAC)
 - Includes added materials to increase EM SE


Need: Composite that retains structural properties and EM SE equivalency to metals

EM Shielding Requirements

- Based on military specifications
 - MIL-STD-461, -464, and -2169B specifications
 - $_{\odot}~$ Establishes electronic enclosure EM SE design envelope

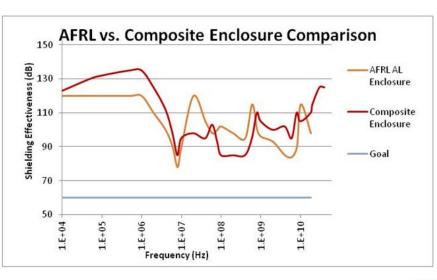
Meet Established Requirements to Defeat Identified Threats Across Broad Frequency Range

Note: MIL-STD-2169B HEMP not included in graph due to classification

• Modified to include SE of 1/8-inch-thick Al Air Force (AF)-supplied box

- Achieve EM SE and maintain structural properties
 - Development catalyst AF SBIR "Electromagnetic Hardened Composite Enclosures for Aircraft Systems" (Ref: AFRL-RX-WP-TR-2014-0121)
 - Based on graphite/PEEK composite
 - Maintain composite structural characteristics
 - > Strength, stiffness, vibration, and damage tolerance
 - o EM shielding effectiveness equivalent to AI
 - Threshold as defined by specifications
 - Objective as defined by AF AI enclosure

AF Baseline	Target Shielding Effectiveness		
Enclosure	Threshold ¹	Objective ²	
75-135 dB*	60 dB min**	80 dB min**	


Varies by frequency

Based on environment

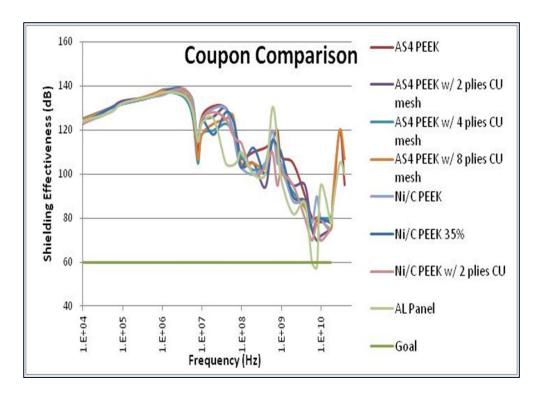
Represents minimum value across all frequencies

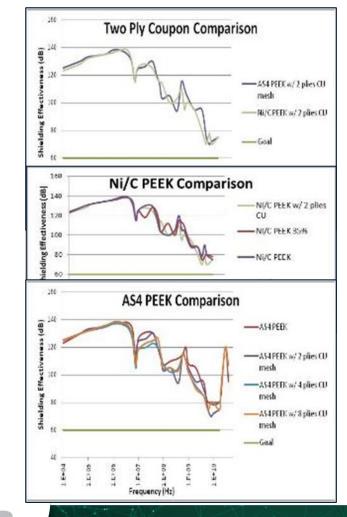
Based on AF enclosure measurements

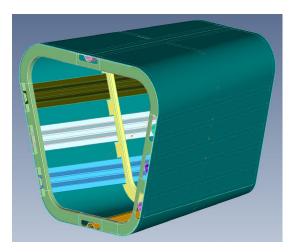
- Electronic enclosure demonstration
 - Shielding effectiveness comparable to Al
 - o Low- and high-frequency enhancements over AI
 - Producibility which supports scalability
 - Structural properties support substitution for AI

76% Weight Reduction

Air Force
Aluminum BoxAF 131-10
Electronic Enclosure32.5 lb7.6 lb


- Graphite/PEEK has high EM SE.
 - High compaction pressure with in-situ tape placement yields dense laminate, high EM SE
- Copper (Cu) mesh integration process is critical.
 - Interlaminar location
 - Location relative to laminate surfaces
 - Overlapping tape and discreet placement
 - \circ 0.50-inch tape in-situ placed with proprietary head
 - 0.125-inch overlap (no gaps)
 - Quantity of layers (defines resonance chambers)
- Ni-coated carbon fibers are examined.
 - No global impact but frequency shifts





- Electronic enclosure panel data
 - Similar trending between panels

- Structure demonstration
 - Active program constructing representative helicopter tail section using the multifunctional material for EM shielding in the fuselage skin
 - $\circ~$ EM and mechanical data pending
 - Applied to fuselage skin for unmanned aircraft system (UAS) fuselage skin structure
 - $\circ~$ Applied bulkheads used to seal fuselage
 - EM shielding like electronic enclosure

- UAS fuselage skin
 - IM7/PEEK copper mesh multifunctional composite
 - Cu mesh enhances SE
 - In-situ tape placement of UAS fuselage skin (IM7/PEEK and Cu mesh)
 - Bulkheads (fore and aft) preformed (3-D printed and pressed)
 - o Seal interior of fuselage
 - Average of 60+ dB SE on average in the 50-MHz to 18-GHz range
 - Minimum SE values for each fuselage skin (2, 3, & 4 layers copper mesh)
 - $_{\odot}$ $\,$ 67+: 50M Hz to 600 MHz
 - 88+: 1 GHz to 5 GHz
 - 102+: 7 GHz to 18 GHz
 - Threshold requirements for EMI/EMC, EMP, and HPM EM types/threats demonstrated as achievable

Multifunctional Composite Design Observations

- Multiple laminate configurations evaluated
 - Thicker laminate enhances EM SE at certain frequencies, and overall performance averaged across frequencies is enhanced.
 - Supports separation of Cu mesh forming interlaminar resonance chambers
 - Thinner laminate affects resonance
 - Still significantly lighter than metal and SOA
 - Resonance contributes to SE variations with frequency
 - Controlled with placement of copper mesh
 - Cu mesh placement in laminate critical
 - Can alter EM SE at specific frequencies

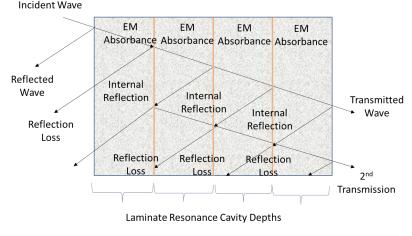


Image Source: Author generated.

Manufacturing and Fabrication Concerns

- Configuration driven
 - Enclosures
 - Simple box configuration with generous radii preferred
 - Complex shapes difficult to fabricate and limit materials to injection molding or metals
 - Structures
 - Transfers a portion or all EM SE to external structure (i.e., platform body)
 - Installed enclosures provide added protection and shielding between installed systems
- Composite process considerations
 - Injection molding
 - Minimize resin rich areas which impact EM SE
 - Automated tape placement
 - Supports controlled placement of fibers and tailoring of EM SE properties

Manufacturing and Fabrication Concerns

- Integration of special features
 - Cooling fans
 - Vents and heat sinks
- Enclosure and structure penetrations
 - Penetrations for cables and other hardware (hydraulics, etc.)
 - Access panels for equipment and maintenance considerations
 - \circ Conductive seals
- Internal separations
 - Separation of components within enclosures and EM protected structures in the areas with electronics
 - \circ Inclusion of integrated EM barriers

Repairability and Maintainability Issues

- Corrosion control
 - Metallic structures
 - Galvanic corrosion with composite and metal interfaces
- Damage mitigation
 - Maintain structural and EM characteristics
 - Modified repair techniques
 - Maintain conductivity continuity
 - Filled polymers represent challenge
 - Fiber-reinforced composites
 - Repair applied coatings
 - Restore structural and functional integrity

Future Direction

- Exploration of design options and EM impact
 - Inclusions of vents
 - Thermal properties for cooling
 - Electronics box spacings
 - Separation distances of electronics with appropriate shielding
 - System coupling
 - \circ $\,$ EM effects with EM structure coupled with interior enclosures $\,$
- Development of analytical methodology
 - Analytical tool development to support design
 - Frequency tailoring

