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ABSTRACT 
This report focuses on research on the mechanical properties of different substrate/deposited 
material laser-cladding combinations, specifically those that do not require a heat treatment, as 
well as the potential of laser cladding as an alternative to chromium plating.  A wide variety of 
substrate and deposited materials is summarized, although there was a substantial lack of 
research into the desired Inconel 625 laser cladded onto martensitic stainless steel.  However, 
there are multiple research publications of Inconel variations cladded onto austenitic stainless 
steels reviewed.  There is also a summary of recent research on replacing the problematic 
chromium plating technique with high-speed laser cladding, which is promising.  
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1.0  TI Request 

1.1  INQUIRY 

1.1.1  First Inquiry 
Is there a body of knowledge/research on laser cladding materials that do not require heat 
treatment?  

1.1.2  Second Inquiry 
Has anyone developed a hybrid repair of components and are there better material 
combinations for the repair? 

1.2  DESCRIPTION 
The inquirer is specifically interested in mechanical testing of laser cladding on various 
substrates. An example (and current thought/application) is to deposit Inconel 625 onto 410 
martensitic stainless steel and possibly avoid furnace stress relief that distorts the component 
and leads to further repair actions. 
 
The inquirer is involved in developing high-speed laser cladding (very thin deposition) on 
rotating components where chrome plating would normally be used. It is a high-speed, directed 
energy deposition (DED) with a very minimal (~0.0001 inch) heat-affected zone. This will involve 
much testing (high-cycle fatigue, low-cycle fatigue, corrosion, wear, and bond). 

Via DED, the team is currently doing component repair using powder with chemistry that 
matches the base material. Material combinations that do not match, primarily mechanical 
properties/testing, are also of interest.  

The inquirer is running a project to develop a hybrid repair (inspect, pre-machine, DED, finish 
machine, and inspect—all in one setup).  What is being found is that the component still 
requires heat treatment somewhere in the process due to untempered martensite (base 
material is 410ss).  This is still an improved process from what is done today, but the benefits of 
a hybrid repair do not materialize (still a route out for heat treatment and will require 
distortion/more machining).   
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2.0  TI Response 

2.1  INTRODUCTION TO LASER CLADDING 
Laser cladding, also known as laser metal deposition, is a technique for adding one material to 
the surface of another.  This is accomplished by feeding a stream of metallic powder or wire 
(cold or hot) into a melt pool that is generated by a laser beam as it scans across the target 
surface, depositing a coating of the chosen material with a short exposure time.  This allows the 
material(s) to be deposited accurately, selectively, and with minimal heat input into the 
substrate.  The inherently rapid heating and cooling rates associated with the laser-cladding 
process enable extended solid solubility in the metastable or nonequilibrium phases of 
production, offering the possibility of creating new materials with advanced properties.  The 
result is a metallurgically bonded layer which is tougher than can be achieved with thermal 
spray and less dangerous to health than the process of hard chromium plating. 

Laser cladding by a powder injection technique has been widely used in industrial applications 
such as rapid manufacturing, parts repair, surface coating, and innovative alloy development.    
The capability to mix two or more types of powders and control the feed rate of each powder 
flow makes laser cladding a flexible process for fabricating heterogeneous components or 
functionally graded materials [1].  Researchers have found that the wire-feed method has 
several advantages regarding its deposition speed and efficiency, with the ability to produce 
smooth surface with limited porosity, fewer defects, and better material quality at a higher 
deposition rate [2].  Regardless of the feedstock, this technology allows the material gradient to 
be designed at a microstructure level because of small, localized fusion and strong mixing 
motion in the melt pool of laser cladding. Thus, materials can be tailored for a flexible, 
functional performance in particular applications [1]. 

2.2  LASER CLADDING WITH HEAT TREATING 
Laser cladding with nickel titanium (NiTi) alloy powders, applied as a new coating technology, 
has become one of the research hotspots for improving substrate surface performance [3].  
Residual stress at the interface between the cladded layer and the substrate may cause 
problems of thermal stability at elevated temperatures [4].  Because of this, the subsequent 
heat treatment has been considered for improving its chemical homogeneity and phase 
transformation behavior of the coating [3].  Heat treatment is the process of heating metal 
without allowing it to reach its molten stage and then cooling it in a controlled fashion to 
achieve the desired material and mechanical properties.  There are three stages of heat 
treatment:  (1) heat the metal slowly to ensure it maintains a uniform temperature, (2) 
soak/hold the metal at a specific temperature for an allotted period, and (3) cool the metal to 
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room temperature.  If done properly, heat treatments can make the metal stronger, more 
resistant to abrasion, or more ductile [5].   

Though nearly none of the research summarized in this report mentions any pre- or 
postprocess heat treatments in the publications, there are companies [6] and reports [7–10] 
that support the benefits of and/or need for preheating, annealing, or postweld heat 
treatments.  Multiple reports [8–10] involve laser cladding Ni60 self-lubricated, antiwear 
composite coatings onto different substrates and exploring the effects of various heat 
treatments, with all of them claiming positive hardness, wear resistance, and friction results.   

In 2015, Lu et al. [8] investigated a Ni60/h-BN self-lubricating, antiwear composite coating on 
304 stainless steel and the effects of stress relief annealing heat treatments for one and two 
hours.  After the 1-hour heat treatment, the laser clad coating presented the best antiwear and 
friction reduction properties.  Wang et al. [9] investigated the heat treatment (25 °C, 500 °C, 
600 °C, and 700 °C for 1 hour) effects the antiwear composite coatings had on a 35CrMoV 
substrate in 2022.  They concluded that the mechanical properties of the coating were 
significantly improved by the 600 °C heat treatment, with the microhardness becoming more 
stable and the average friction coefficient and wear volume reduced.   

Liu et al. [10] explored laser cladding Ni60/2.0 wt.%CeO2 self-lubricating, antiwear composite 
coatings, also on 35CrMoV steel, that were thermally treated at 25 °C, 500 °C, 600 °C, and  
700 °C for 1 hour, respectively, at a heating rate of 10 °C/min.  They concluded from the friction 
coefficient and mass loss experiments that the wear resistance of the coating after 700 °C 
thermal treatment fully improved. The laser cladding parameters used for these tests are 
shown in Table 1. 

Table 1:  Laser Cladding Process Parameters [10] 

Parameters Values 
Power 3000 W 
Spot sizes 15 mm x 3 mm 
Scanning speed 120 mm/min 
Overlap ratio 0.4 
Gas flow rate of argon 15 L/min 
Wavelength 1080 nm 
 

Zhang et al. [11] claimed that heat treatments of laser-cladded coatings could effectively 
eliminate residual stresses and avoid cracks.  Additionally, preheating the substrate could 
reduce the temperature gradient of the substrate and coating, which is advantageous for a 
defect-free coating.  However, the effect of heat treatment processes on the evolution of the 
microstructure of the coating is still uncertain and should be a continued avenue of research, as 
should be surface treatments.  Finally, they stated that defects such as element segregation, 
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inclusion, and structural ripples in the coating can be effectively improved with the help of 
external field-assisted technology.  With this technology, the ultrasonic, cavitation, and 
vibration effects of ultrasonic-assisted deposition technology can promote full mixing, diffusion, 
and mixing of various elements in a high entropy alloy coating to effectively avoid stress 
concentration, homogenize the stress field, and optimize the surface properties of the coating. 

2.3  LASER CLADDING WITHOUT HEAT TREATING 
The broad review of laser cladding technology written by Zhang et al. [11] includes 81 
references, most of which were published within the last two years.  However, there were not 
any reports that directly matched the first inquiry, although quite a few involved Inconel alloy 
coatings and/or martensitic stainless-steel substrates.  Inconel 625 is a nickel-based superalloy 
comprised of nickel (58% min), chromium (20–23%), molybdenum (8–10%), iron (5% max), 
niobium plus tantalum (3.15–4.15%), and traces of other elements.  It is used for marine, 
nuclear, and rocket engine applications due to its superior resistance to a wide range of 
corrosive environments of unusual severity as well as high-temperature effects such as 
oxidation and carburization [12].  Martensitic stainless steels are known for strength, corrosion 
resistance, and durability, although they can be further divided by their carbon content.  
Stainless steel 410 is regarded as a general-purpose, martensitic stainless steel and usually 
supplied in an annealed condition [13]. 

2.3.1  Martensitic Stainless-Steel Substrates 
Saeedi et al. [14] at the Malek Ashtar University of Technology (Iran) investigated the nichrome 
(NiCr) and NiCr-titanium carbide (TiC) laser cladding on AISI 420 stainless steel substrates.  The 
researchers experimented to determine the optimal process parameters.  The elemental, 
phasic, and microstructural assessments and characterizations of the obtained coatings were 
done by optical and scanning electron microscopes alongside energy-dispersive spectroscopy 
(EDS), X-ray diffraction.  It was also seen that the hardness of the composite clad containing 
reinforcement particles was far greater than cladding without such particles because of the 
increased effect of nucleation and the presence of TiC particles. 

2.3.2  Austenitic Stainless-Steel Substrates 
Abioye et al. [15] performed corrosion and Vickers microhardness (0.3-kg load) testing of laser-
cladded Inconel 625; however, it was on austenitic stainless steel 304 rather than martensitic 
stainless steel 410.  While the parameters of the depositions changed on each pass, 
postprocessing was not done before testing.  They found that the average microhardness of the 
typical single clad bead was 232 ±4.5 HV0.3 and that the substrate hardness was not significantly 
altered, with an average value of 205 ±1.5 HV0.3 at the interface.  Sivamani et al. [16] aimed to 
develop a model relating the independent variables of laser power (2200–2800 W), powder-
feed rate (30–50 g/min), laser-scanning speed (800–1200 mm/min), and the focal position of 
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the laser beam (15–35 mm) with the Vickers hardness number to achieve the maximum 
hardness of CO2 laser cladding of Inconel 625 powder on a stainless steel 304 substrate.  The 
model developed by the curve-fitting method was employed to optimize the hardness using 
first derivative test, generalized reduced gradient, and grey-relational analysis.  The maximum 
hardness of 374 was achieved first by the derivative test at optimal laser power, powder-feed 
rate, laser-scanning speed, and the focal position of the laser beam of 2554 W, 999 mm/min, 30 
mm, and 40.5 g/min, respectively.  Pascu et al. [17] attempted to optimize the operational 
parameters of the Inconel 718 laser cladded onto stainless steel 304 substrates using a pulsed 
laser.  They related the power, pulse width, and frequency of the cladding to the clad 
microhardness, which ranged from 182 to 228 HV0.2, using a Taguchi design of experiments 
(DOE).  They concluded that for predicable cladding results using a pulsed laser, vary the laser 
power and frequency while keeping the pulse width constant.  They also noted that the 
cladding microstructure was composed from coarse dendrite near the interface with the 
substrate and a finer dendrite structure in the upper area of the coating.  Mariani et al. [18] 
found that surface finishing left by laser cladding was not always as smooth as required for 
most applications, and the Inconel 625 layers on AISI 304L required postprocessing via laser 
polishing. 

Xu et al. [2] used wire laser cladding to obtain TiC-reinforced Inconel 625 coatings on stainless 
steel 316L and found significant grain refinement.  They also reported that the coatings had 
superior mechanical and corrosion performance.  The results indicated that the defect-free 
Inconel 625 coating presented an obvious microstructure transformation, while the bonding 
interface can be divided into three different areas.  An unmixed area was observed near the 
bonding interface with precipitated ferrite of different formations.  A decrease of the hardness 
(H) and reduced elastic modulus (Er) profile was detected in this area.  Compared to the 
substrate, the cladded and bonding areas exhibited superior tensile properties at both room 
temperature and high temperature.  The corrosion performance of the coating area was also 
close to the bonding area and superior to the substrate in different solutions, indicating an 
excellent protecting effect of Inconel 625 coating.  Bloemer et al. [19] also published research 
on assessing a combination of the use of an empirical-statistical model and DOEs to minimally 
validate the geometrical characteristics (dilution, coating height, waviness, and porosity) of a 
laser-induced Inconel 625 coating on an AISI 316L substrate.  The microstructure, 
microhardness, and bending resistance was assessed by depositing a verification coating, which 
had some pores present.  The verification coating showed a columnar dendritic microstructure 
and a microhardness and bending resistance about 110% and 30% higher, respectively, than 
that observed for the AISI 316L substrate.   

Segura et al. [20] explored the improved mechanical properties and reduced sensitivity to 
corrosion on an SS 316L substrate through grain boundary and microstructure engineering 
concepts of utilizing electron-beam, powder bed fusion cladding of Inconel 690.  The resultant 
microstructures produced a tensile yield strength of 0.527 GPa, elongation of 21%, and Vickers 
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microindentation hardness of 2.33 GPa for the Inconel 690 cladding in contrast to a tensile yield 
strength of 0.327 GPa, elongation of 53%, and Vickers microindentation hardness of 1.78 GPa, 
respectively, for the wrought 316 L stainless steel substrate.  Additionally, the Inconel 690 
subgrain boundaries essentially served as surrogates for coherent twin boundaries to avoid 
carbide precipitation and corrosion sensitization.   

Silwal et al. [21] used gas tungsten arc welding (GTAW) cladding of Inconel 625 onto stainless 
steel 347.  The microstructure of the clad bead and the substrate was analyzed.  A heat-
affected zone (HAZ) cracking was observed in the higher range of primary current.  Verdi et al. 
[22] deposited an Inconel 625-Cr3C2 composite coating onto ferritic and stainless-steel 
substrates and studied the effect of exposition at high temperatures on the microstructure and 
mechanical properties.  The microstructure was analyzed by scanning and transmission electron 
microscopy.  Depth-sensing indentation tests were performed on the surface of the clads to 
obtain the evolution of the elastic modulus and the hardness with the exposition time. 

2.3.3  Other Notable Efforts 
Lamikiz et al. [23] evaluated the mechanical properties of different laser-cladding tests on 
Inconel 718.  They produced hybrid (half-cladded material and half substrate) and rapidly 
manufactured (only cladded material) specimens that were tested as deposited and then after 
a precipitation-hardening treatment.  The results, presented as traditional stress/strain curves, 
showed that the laser-cladding strategy could have a significant influence on the mechanical 
properties of the part and that there was a high risk to obtain lower mechanical properties of 
wrought Inconel 718.  Guévenoux et al. [24] studied the mechanical response of Inconel 718 
repaired thin walls by laser cladding the powder onto 1.6-mm-thick Inconel 718 wrought plates.  
They performed in-situ scanning electron microscopy tensile tests that showed plastic strain 
localization appeared as the loading amplitude increased.  They found that the cladded region 
was much more deformed than the substrate and there was a strain fluctuation at the grain 
size scale in the repaired area.  They explicitly stated that no heat treatments were applied to 
the samples.   

For optimization purposes, Vollmer and Sommitsch [25] evaluated the bonding characteristics 
between the substrate and coating of laser-cladded coatings.  A special testing device, shown in 
Figure 1, was developed to measure the adhesive tensile strength of specimens consisting of 
Ferro55 and Ni25 powders cladded onto C45W and 16MnCr5 steel substrates.  After hardness 
tests were performed on the coatings, tensile tests were done to determine the maximum 
tensile force, as the adhesive strength cannot be done with a tension value because it is 
impossible to reach a uniaxial stress condition with the small specimen geometry.  They did 
tests preheating the substrates and as received, with varying results.  They concluded that the 
C45W substrate yielded better results. 
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Figure 1:  Diagram of Bonding Test (Left), Before Testing (Top Right), and After Testing (Bottom Right) [25]. 

2.4  CHROMIUM PLATING  
Hard chromium plating has been facing prohibitive measures from the European Union, leading 
the industry to try and seek alternative solutions. Laser cladding had been discounted as a 
solution in the past because it was not deemed fast enough or capable of delivering thin 
enough coatings. However, developments in the technology (specifically, extreme high-speed 
laser application) now allow for higher speed deposition with thinner layers in a more power 
efficient manner, meaning that laser cladding can provide an effective alternative to hard 
chromium plating for particular applications [1].  This is needed, as the chrome electroplating 
process requires replacing because of the carcinogenic chemicals required in manufacturing 
[26]. 

2.4.1  Laser-Cladding Alternatives to Chromium Plating  
One technology currently under investigation for replacing conventional coating processes 
(chromium plating or thermal spraying) is the high-speed laser cladding.  Using high-speed laser 
cladding (high-speed laser metal deposition [HS-LMD])—a DED process—a laser beam heats 
coaxially fed powder particles to nearly melting temperature before being deposited to the 
desired surface.  Layers generated by this process can be typically adjusted to range between 
50 and 300 µm per layer [26].  Vogt et al. [26] examined Rockit401 and Inconel 625 coatings 
deposited by HS-LMD.  They investigated the influence of high surface rates on properties such 
as defects, hardness, and crack susceptibility, as well as achievable layer thicknesses. 

Christoforou et al. [27] examined the potential of replacing the chrome plating layer of a steel 
rod mill pinion with a nickel-based tungsten-carbide composite layer and intermediate Inconel 
625 layer deposited by laser cladding.  They performed microhardness and nanoindentation 
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techniques.  Three-bend tests were done on test specimens from a pinion sample to observe 
crack propagation resistance.  Some results are included in Table 2.  While they noted that laser 
clad coatings can be produced at the scale of 30 µm (~0.001 inch) using EHLA, they may not be 
as applicable to the load bearing applications being investigated.   

Table 2:  Result Comparison of Chrome Plating and Laser Cladding Coating [27] 

 Chrome Plating Ni-WC Inconel 625 Substrate 
Hardness (Hv) 1000 2154 459 431 
Elastic modulus (GPa) 103–248 269 161 174 
UTS (MPa) 103–482 — — — 
Crack density (cracks/cm) 200–1500 0.3 0 0 
 

Sommer et al. [28] examined using high-speed laser cladding (HSLC) of AISI stainless steel 316L 
on thin-sheet, AISI 430Ti, ferritic, stainless-steel substrates.  The results demonstrated that clad 
widths as high as 1413 µm and dilution depths as low as 144 µm can be obtained by high-speed 
laser cladding of thin-sheet substrates.  Other HSLC studies include Lampa and Smirnov [29] 
investigating an iron-based alloy consisting of 18% Cr and 2.5% Ni and Xu et al. [30] 
investigating an iron-based alloy powder on a China 45 steel substrate to replace chrome 
plating. 

Wang et al. [31] examined the chromium plating layer failure of a piston rod and the proposed 
repair using an Ni-based alloy mixed with Nb powder by means of laser cladding.  The 
microhardness and wear resistance of the cladding layer were tested.  The Ni-base +15% Nb 
cladding layer was aged to measure the change in hardness and wear resistance and compared 
with the chromium plating layer.   

2.4.2  Chromium-Based Laser Claddings 
Karuppasamy et al. [32] aimed to enhance the corrosion resistance behavior of stainless steel 
410 by laser cladding Colmonoy-5 alloy particles.  The microstructure, hardness, and corrosion 
resistance were investigated.  Natarajan et al. [33] did a similar study with Colmonoy-5 particles 
cladded onto stainless steel 420 substrates.  X-ray diffraction, SEM, and EDS determined the 
resulting phases and coating morphologies.  Vickers microhardness test was carried out to 
study the hardness and load-carrying capacity of the cladding specimen.  Natarajan et al. [34] 
also investigated the hardness, microstructure, and corrosion resistance of laser-cladded 
Colmonoy-6 particles on a stainless steel 316L substrate.  The results showed that the cladded 
samples experienced greater hardness and lower values of surface roughness and provided 
better corrosion resistance when compared with substrate samples. 
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2.4.3  ASTM Standard for DED Metal Deposition 
ASTM has released a standard for DED (ASTM F3187-16, “Standard Guide for Directed Energy 
Deposition of Metals” [35]).  It states that this document is intended to serve as a guide for 
defining the technology application space and limits, DED system set-up considerations, 
machine operation, process documentation, work practices, and available system and process 
monitoring technologies.  The only mechanical test method referenced in this document is 
ASTM D6128-16, “Standard Test Method for Shear Testing of Bulk Solids Using the Jenike Shear 
Tester” [36], which is commonly used for powder testing.  This is a means of testing the 
properties of the powder used in laser cladding rather than the mechanical bond. 

3.0  CONCLUSIONS 
Laser cladding is a metal and ceramic deposition method that has been widely used in industrial 
applications such as rapid manufacturing, parts repair, surface coating, and innovative alloy 
development.  There has been much recently published research exploring various process 
parameters and materials and the use of pre/postprocessing methods to optimize the process.  
While there was a lack of published research into the cladding of Inconel and martensitic 
stainless steel, there was a wealth of information on Inconel and austenitic stainless steel and a 
variety of other materials.  Additionally, laser cladding, particularly high-speed laser cladding, is 
being explored as an alternative for chromium plating.  The advancements focus on thinner 
layers, quicker deposition speeds, and increased mechanical properties of laser cladding. This 
makes it a favorable alternative, with decreased health risks and environmental effects.  While 
the recent research into these areas is positive, many avenues must still be explored for laser 
cladding to expand its use in critical applications. 
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