
IACJOURNALDS

PAGE 26 

ATMOSPHERIC CORROSION 
SEVERITY AND THE ROLE  
OF THE ENVIRONMENT:   
DETERMINING A DIRECT CORRELATION

A Brief History of the Advanced 
Inorganic-Organic Hybrid  

Polymers of NRL’s  
Chemistry Division

PAGE 06

Emerging Applications of  
Machine Learning and  
Predictive Analytics in  

Naval Energy Autonomy
PAGE 14

Understanding the Bow  
Topside Flow Field of the  

USS Zumwalt for Hypersonic 
Missile Launching:  A  
Potential Missing Link

PAGE 37

Attributing Mission  
Performance to Submarine 

Subsystems
PAGE 50

SPECIAL NAVY EDITION

2024
Di

st
rib

ut
io

n 
St

at
em

en
t A

:  
Ap

pr
ov

ed
 fo

r p
ub

lic
 re

le
as

e;
 d

is
tr

ib
ut

io
n 

is
 u

nl
im

ite
d.



Special Edition  //  Navy  //  2024

Editor-in-Chief:   
Gregory Nichols

Sr. Technical Editor:   
Maria Brady 

Graphic Designers:   
Melissa Gestido, Katie Ogorzalek

The DSIAC Journal is a publication of the Defense 
Systems Information Analysis Center (DSIAC).  DSIAC 
is a DoD Information Analysis Center (IAC) sponsored 
by the Defense Technical Information Center (DTIC) 
with policy oversight provided by the Office of the 

Under Secretary of Defense (OUSD) for Research and 
Engineering (R&E).  DSIAC is operated by the SURVICE 

Engineering Company.

Copyright © 2024 by the SURVICE Engineering Company.  
This journal was developed by SURVICE under DSIAC 
contract FA8075-21-D-0001.  The Government has 

unlimited free use of and access to this publication 
and its contents, in both print and electronic versions.  
Subject to the rights of the Government, this document 

(print and electronic versions) and the contents 
contained within it are protected by U.S. copyright 
law and may not be copied, automated, resold, or 
redistributed to multiple users without the written 
permission of DSIAC.  If automation of the technical 
content for other than personal use, or for multiple 
simultaneous user access to the journal, is desired, 

please contact DSIAC at 443.360.4600 for  
written approval.

Reference herein to any specific commercial  
products, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or DSIAC.  
The views and opinions of authors expressed herein 

do not necessarily state or reflect those of the United 
States Government or DSIAC and shall not be used for 

advertising or product endorsement purposes.

ISSN 2471-3392 (Print) // ISSN 2471-3406 (Online)

Distribution Statement A:   
Approved for public release; distribution is unlimited.

On the Cover:  
Digital Art Rendering (Source:  Canva). 

ABOUT DSIAC 
Who We Are
A DoD Information Analysis 
Center comprised of 
scientists, engineers, 
researchers, analysts, and 
information specialists. 

What We Do
Generate, collect, research, 
analyze, synthesize, and 
disseminate scientific 
and technical information 
(STI) to DoD and federal 
government users and 
industry contractors.

Why Our Services
To eliminate redundancy, 
foster collaboration, and 
stimulate innovation.

CONTACT DSIAC 
IAC Program  
Management Office
8725 John J. Kingman Road 
Fort Belvoir, VA 22060 
Office:  571.448.9753 
 
 

DSIAC 
Headquarters 
4695 Millennium Drive 
Belcamp, MD 21017-1505 
Office:  443.360.4600 
Fax:  410.272.6763 
Email:  contact@dsiac.org

DSIAC Technical 
Project Lead
Brian Benesch 
4695 Millennium Drive 
Belcamp, MD 21017-1505 
Office:  443.360.4600

DSIAC SERVICES
Subject Matter 
Expert (SME) 
Connections

Access to a network of 
experts with expertise 
across our technical focus 
areas.

Webinars & 
Events

Our webinars feature a 
technical presentation from 
a SME in one of our focus 
areas. We also offer key 
technical conferences and 
forums for the science and 
technology community.

Technical 
Inquiries (TIs)

Up to 4 hours of FREE 
research using vast DoD 
information resources and 
our extensive network  
of SMEs.

Specialized 
Task Orders

Research and analysis 
services to solve our 
customer’s toughest 
scientific and technical 
problems.

STI  
Collection

Our knowledge management 
team collects and uploads 
all pertinent STI into DTIC’s 
Research & Engineering 
Gateway.

Information 
Research 
Products

The Defense Systems 
Digest, state-of-the-
art reports, journals, TI 
response reports, and  
more available on our 
website.

IACJOURNALDS

02 DSIAC Journal  //  202402 DSIAC Journal  //  2024

mailto:contact@dsiac.org


F E AT U R E D  A R T I C L E

ATMOSPHERIC CORROSION 
SEVERITY AND THE ROLE 
OF THE ENVIRONMENT:  
DETERMINING A DIRECT 
CORRELATION
By Douglas C. Hansen, Christine E. Sanders, Ronald A. Zeszut, 
Raymond J. Santucci, and Matthew J. Rothgeb

Corrosion costs the U.S. Department of 

Defense billions of dollars annually and 

heavily impacts the availability of DoD 

assets to carry out their missions. This article 

discusses the future of addressing this issue 

using condition-based maintenance utilizing 

artificial intelligence/machine-learning and 

cutting-edge exposure simulation chambers.
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CELEBRATING 
NEARLY 250 YEARS 
OF U.S. NAVAL 
INNOVATION 

O n March 9, 1862, as 
the first sunlight of the 
day sparkled over the 

Chesapeake Bay, history was being 
made with the world’s first clash of 
steam-powered, ironclad warships.1  
The U.S. Navy’s newest and most 
advanced ship, the USS Monitor, 
engaged in an hours-long battle with 
the CSS Virginia (formerly the USS 
Merrimack).  Though the resulting 
battle would end in a draw, naval 

warfare was changed forever.  Nearly 
160 years later, the Navy launched 
Task Force 59—a one-of-a-kind and 
advanced concept to quickly combine 
unmanned systems and artificial 
intelligence with naval operations.

From its humble beginnings in 1775 
with a schooner and a sloop, the 
Navy has since transformed into a 
formidable fighting force—perhaps 
the strongest and most capable naval 
force in world history.  Apart from 
the courage and legacy of the sailors 
and marines who have fought and 
served gallantly for centuries, the Navy 
also owes its continued success and 
fierceness to a long-time tradition of 
embracing innovation.  For nearly 
250 years, they have been committed 
to pushing the boundaries of what is 
possible with the latest technology, 
thus enabling them to prepare for the 
future fight. 

As we launch the renewed DSIAC 
Journal, we dedicate this first special 
edition to the Navy and its celebrated 
tradition of embracing innovation 
and technology, especially in the most 
pivotal and volatile of times.  From the 
screw propeller to nuclear propulsion 

to nanotechnology and advanced 
materials to autonomy, hypersonic 
missiles, multidomain operations, and 
additive manufacturing, the Navy 
continuously pushes forward.  We 
highlight some of these advancements 
here with a collection of five articles 
that embrace the spirit of current naval 
innovation and operational direction. 

We begin this issue with a historical 
perspective from the Naval Research 
Laboratory’s (NRL’s) Chemistry 
Division on the development of 
inorganic-organic hybrid polymers. 
Then, we turn to an exploration of 
emerging applications of artificial 

NOTE FROM THE EDITOR-IN-CHIEF

As we launch the renewed 

DSIAC Journal, we dedicate 

this first special edition to 

the Navy and its celebrated 

tradition of embracing 

innovation and technology, 

especially in the most pivotal 

and volatile of times.

BY GREG NICHOLS

1 Naval History and Heritage Command.  “The Battle of Hampton Roads.”  https://www.history.navy.mil/our-collections/photography/wars-and-events/the-american-
civil-war--1861-1865/css-virginia-destroys-uss-cumberland-and-uss-congress--8-march-1.html, accessed on 5 July 2023.  
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intelligence and machine learning in 
naval energy autonomy and digital 
transformation from a collaboration 
between the Naval Facility Engineering 
and Expeditionary Warfare Center 
and the University of Dayton Research 
Institute (UDRI).  A team from 
NRL and UDRI present our feature 
article that covers new methods for 
understanding an old enemy of Navy 
steel that costs billions of dollars 
each year—corrosion.  They describe 
research that seeks to improve upon 
the age-old Environmental Severity 
Index rankings used in corrosion 
maintenance by combining real-
world corrosion measurements with 
advanced analytical techniques to 
better understand the relationship 

between the environmental conditions 
and the reliability and maintainability 
of Navy assets. 

We end this special issue with two 
articles focusing on naval weapons 
systems.  One depicts the modeling 
and characterization of airwake 
needed to determine how to properly 
fit a Zumwalt class destroyer with 
hypersonic launch capabilities.  
The other discusses the Mission 
Effectiveness Dashboard, a browser-
based tool that allows users to quantify 
the performance of a submarine across 
missions, thus allowing architects to 
visualize outputs as part of the process 
of making informed submarine design 
decisions.

Admiral Chester Nimitz famously 
said, “It is the function of the Navy to 
carry the war to the enemy so that it 
is not fought on U.S. soil.”2  We hope 
this special edition offers an overview 
of how the Navy is doing that, mainly 
through shipbuilding (materials and 
design), maintenance, weaponry, and 
power.  The work never ends.  The 
information we present here is only a 
tiny fraction of the research the Navy 
is currently conducting but offers a 
glimpse into the large-scale, long-range 
planning needed to keep the fleet in 
fighting shape. 

Sincerely, 

2 Naval History and Heritage Command.  “Employment of Naval Forces by Fleet Admiral Chester W. Nimitz, USN.”  https://www.history.navy.mil/research/library/
online-reading-room/title-list-alphabetically/e/employment-of-naval-forces.html, accessed on 5 July 2023.  

WANT TO
READ MORE?

If you found this 
publication insightful and 
engaging, please check 
out our back issues on 
dsiac.org. We also offer 
similar journals, covering 
the cyber and homeland 
security spheres, which 
you can find at csiac.org 
and hdiac.org.
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THE ADVANCED 
INORGANIC-ORGANIC 
HYBRID POLYMERS 
OF NRL’S CHEMISTRY DIVISION

A BRIEF HISTORY OF 

BY MANOJ KOLEL-VEETIL   (PHOTO SOURCE:  CANVA AND M. KOLEL-VEETIL)
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INTRODUCTION

I n common language, the term 
“polymer” elicits references to 
many ordinary, practical items, 

including the phrase “paper or plastic” 
in checkout counters.  “Polymer” 
is derived from Greek, with “poly” 
meaning many and “mer” meaning 
part.  For example, in typical human-
made polymers such as polyethylene, 
polyurethane, and polyvinyl chloride, 
there are many units of either 
ethylene, urethane, or vinyl chloride 
put together to form the ultimate 
polymer.  In all commonly known 
polymers, the repeating units are 
made from mainly carbon-containing 
units.  Hence, they all belong to 
the group of organic polymers.  In 
addition to human-made organic 
polymers, nature is abundant with 
organic polymers such as wool, silk, 
proteins, starch, and cellulose.  In 
contrast, any material that does not 
contain the element carbon can be 
considered “inorganic.”

Borates, silanes, and polyphosphazenes 
are inorganic polymers since they 
do not contain carbon.  Typically, 
organic polymers are flexible and 
have an operating window with 
an upper bound of 400 oC.  For 
example, the polyimide film Kapton 
has an operating window of –269 oC  
to 400 oC.  Carbon-containing 
polymers with high thermal and 

oxidative stabilities are stiffer 
materials, such as the rigid rod 
polymer poly(benzobisoxazole) 
(Zylon).  In such polymers, the 
in-plane aromatic conjugation 
restricts the availability of functional 
groups that can be attacked by 
oxygen.  More flexible polymers like 
polyethylene, polypropylene, and 
polystyrenes tend to be attacked by 
oxygen at much lower temperatures 
and have melting temperatures 
below 250 oC.  In contrast, inorganic 
polymers are usually rigid and tend 
to have higher operating windows.  
To combine the properties of organic 
and inorganic polymers, a new group 
of polymers emerged that comprised 
both groups.  Thus, inorganic-organic 
hybrid polymers are a rarified class 
of materials possessing combined 
properties of both inorganic 
main group element- and carbon-
containing components.

The terms “inorganic-organic” or 
“organic-inorganic” were first coined 
in 1990 by Saegusa and Chujo, 
who reported the polymer poly(N-
acetylethylenimine)(polyoxazoline) 
with terminal triethoxysilyl groups 
[1].  In addition to increasing the 
flexibility of polymers, a principal 
intent in forming an inorganic-
organic hybrid polymer is to improve 
its thermal and oxidative properties.  
One way to circumvent the oxidation 
problem is by slowing down the 

diffusion of oxygen into a polymer 
sample’s interior during oxidation, 
i.e., by diffusion-limited-oxidation 
(DLO) [2].  The most common 
polymers that can provide such a 
condition are silanes and siloxanes.  
In addition to the flexibility of 
their backbones, they tend to form 
inorganic silica (SiO2, melting point 
[M.P.] = 1710 oC) during oxidation 
that significantly impedes the 
diffusion of oxygen.  Other groups 
of inorganic polymeric entities that 
provide such DLO conditions contain 
the elements aluminum, boron, and 
phosphorous.  During oxygen attack, 
these polymers produce alumina 
(Al2O3, M.P. = 2072 oC), boron  
oxide (B2O3, M.P. = 450 oC),  
and phosphorus pentoxide  
(P2O5, M.P. = 340 oC) during 
oxidation, which substantially slows 
the diffusion of oxygen.  In general, 
inorganic-organic polymers are used 
in coatings, functional particles, bulk 
materials, fibers, and composites [3].  
Such applications are crucial for the 
Navy.

A principal intent in forming 

an inorganic-organic hybrid 

polymer is to improve its 

thermal and oxidative 

properties.

07Special Edition  //  Navy



SILOXANE POLYMER 
ORIGINS
The origins of siloxane chemistry can 
be attributed to the English chemist 
Frederic Kipping and his coworkers 
in the early 1900s.  However, the 
discoverers of siloxanes did not deem 
this group of compounds to be of 
significant interest, as evident in the 
statement of Kipping during his 1936 
Bakerian lecture that “the prospect of 
any immediate and important advance 
in this section of organic chemistry 
does not seem to be very hopeful” [4, 
5].  Fortunately, Kipping was proven to 
be wrong by a renaissance in siloxane 
chemistry in the 1940s led by Hyde 
and Delong at the Corning Glass 
Works [6], McGregor and Warrick at 
the Mellon Institute [7], and Rochow 
at the General Electric Company [8].  

During this time, the synthesis of 
polysiloxanes was perfected and led 
to other silarylene-siloxane polymers 
and silalkarylene-siloxane polymers in 
the 1950s.  These were the original 
inorganic-organic hybrid polymers, 
although the term was not coined at 
the time of their conception.  Even 
though they were high-performance 
elastomeric materials, a major 
development occurred in the 1960s 
and 1970s with the discovery of 
carborane-siloxane polymers [9, 10].  
(Carboranes are three-dimensional 
compounds of boron, carbon, and 
hydrogen with polyhedral skeletons 
of the general formula CpBqHp+q.)  

The carborane-siloxane polymers 
possessed exceptional thermal and 
oxidative stabilities.  However, they 
were mainly inorganic polymers and 
thermoelastomeric materials like 
siloxane polymers.

INORGANIC-ORGANIC 
HYBRID POLYMERS’ 
HISTORY AT THE 
NAVAL RESEARCH 
LABORATORY’S (NRL’S) 
CHEMISTRY DIVISION 
NRL Chemistry Division’s entry 
into this exciting area of polymeric 
materials occurred in the 1990s.  To 
add to the suite of their promising 
high-performance phthalonitrile 
polymers with the intent to develop 
novel inorganic-organic hybrid and 
“thermosetting” polymeric versions 
of the existing carborane-siloxane 
polymers, Henderson and Keller 

reported the original synthesis of 
poly(carborane-siloxane-acetylene)
s (PCSA) with exceptional thermal 
and oxidative stabilities [11].  In 
Figure 1, the organic entity in this 
group of polymers was derived by the 
dechlorination of hexachlorobutadiene 
(2) using n-butyl lithium yielding the 
dilithiated diacetylene entity (3) which, 
upon reaction with the halogenated 
carborane-siloxane monomer (named 
DEXIL monomer[4]), produced PCSA (1).   
Containing about 10 inorganic repeat 
units linked by the organic diacetylene 
entities, these oligomers retained up 
to 85% and 92% weight upon pyrolysis 
to 1000 oC in a nonoxidizing and 
oxidizing environment.  This polymer 
started to crosslink from around  
250 oC, with an exotherm peaking 
around 350 oC (Figure 1), by either  
1,2- or 1,4- polymerization of 
the diacetylene groups to yield 
thermosetted carbon domains.

Subsequently, the carboraneless version 
of this polymer was also produced 

Figure 1.  (Left) Reaction Scheme for the Synthesis of Poly(Carborane-Siloxane-
Acetylene) (PCSA) and (Right) the Differential Scanning Calorimetry Thermogram of 
Neat PCSA (Solid) and Cured PCSA (Dashed) (Source:  Reproduced With Permission 
From the American Chemical Society).

DSIAC Journal  //  202408



within the year by Son and Keller [12].  
This was followed by the synthesis of 
a block copolymer wherein blocks of 
PCSA were alternated with siloxane-
diacetylene monomers [13].  At 
this point, hydrosilylation was used 
as a reactive means to produce an 
acetylene-containing silicon (Si)
monomer which could be further 
reacted with other aromatic organic 
entities to produce new versions of 
PCSA [14].

To fundamentally understand 
the thermo-oxidative stability of 
PCSA, surface analysis studies were 
carried out by Pehrsson et al. using 
scanning electron microscopy, X-ray 
photoelectron spectroscopy, scanning 
Auger microprobe scattering, and 
Raman microprobe scattering [15].  
It was seen that PCSA samples 
heated to 400 oC in argon exhibited 
no inorganic segregation; however, 
treatment to the same temperature in 
air produced surface layers of boron 
and Si oxide.  Furthermore, samples 
annealed in argon to 900 °C and then 
oxidized at 500 °C for up to 100 hr 
grew a continuous Si oxide surface 
layer with almost no underlying boron 
oxide.  This layer retarded oxidation 
of the bulk sample at 500 oC.  Thus, 
the thermo-oxidative stability was 
determined to be from the DLO of the 
polymer, with the formation of SiO2-,  

B2O3-, and the possible formation 
of borosilicate-containing protective 
barriers at higher temperatures.

Further, in continuing inorganic-
organic hybrid polymer research, 
a PCSA-like polymer wherein the 
carborane clusters were substituted by 
a clusterless B-Ph group was produced 
by Sundar and Keller [16].  The 
thermal stability of this polymer up 
to 1000 oC in nitrogen was found to 
be lower than PCSA (72.1% vs. 85%).  
However, the crosslinked versions 
exhibited similar oxidative stabilities 
as those obtained from PCSA.  The 
main advantage of this polymer is 
substituting the expensive carborane 
with the inexpensive B-Ph group, thus 
reducing overall cost.

Subsequently, Bucca and Keller 
attempted to incorporate an aromatic 
group-like phenyl(benzene) in the 
backbone of the carborane-siloxane 
inorganic-organic hybrid polymer 
[17].  A 4-phenylethynylphenyl unit 
was used to introduce the aromatic 
group.  However, the presence of a 
labile phenyl group after crosslinking 
caused the polymer to have low 
thermal stability.  Further, the 
ligand 1,4-bis(dimethylchlorosilyl)
benzene was used to incorporate a 
benzene(phenyl) group into a series 
of polymers with thermal stabilities 
between 79% and 86% [18].

An interesting development in 
the progress of inorganic-organic 
hybrid polymers occurred in 1998 
when Houser and Keller introduced 
ferrocene in the PCSA polymer 
in the form of bridging groups 
between siloxane-carborane-siloxane-
diacetylene entities [19].  This polymer, 
producing iron (Fe)-containing ceramic 
had a weight retention of 78% at 
1000 oC in nitrogen compared to the 
typical ferrocenyl-siloxyl polymers 
with a weight retention of around 
50% [20].  The DEXIL monomer was 
further used in hydrosilylation reaction 
with poly(methylhydrosiloxane) to 
produce crosslinked networks with 
high stability [21].  Oxidation-resistant 
thermosets were also formed from 
thermal copolymerization of acetylenic 
monomers containing boron and 
Si [22] and diacetylene-siloxane-
carborane ceramic precursors [23].

In the early 2000s, a new set of 
high-temperature elastomers was 
synthesized at NRL from silarylene-
siloxane-diacetylene linear polymers 
by Homrighausen and Keller [24, 25].  
These differed from the silarylene-
siloxane of the 1950s in that they 
contained the crosslinking unit 
diacetylene, which enabled conversion 
to a thermoset.  Furthermore, both 
the diacetylene and phenyl groups 
were incorporated in the backbone of 
an inorganic-organic hybrid polymer 
using hydroxy-terminated, oligomeric 
poly(silarylene disiloxane)s via 
rhodium-catalyzed dehydrogenative 
coupling for their use in the 

09Special Edition  //  Navy



aminosilane-disilanol polymerization 
reaction [26].

In the meantime, the practical 
implications of PCSA and other 
produced inorganic-organic variants 
were becoming obvious as Keller 
in 2002 demonstrated that they 
could protect carbon fibers (CFs) 
from oxidation when applying 
PCSA as a protective coating [27].  
While uncoated CFs were found to 
catastrophically degrade between 
600 oC and 800 oC, PCSA-coated 
CFs retained up to 96 wt% when 
heated in air to 1000 oC.  This was 
truly impressive!  Around that time, 
Beckham and Keller synthesized 
diacetylene-terminated diacetylene 
containing polysiloxanes—a new 
addition to the class of polysiloxanes [28].

The research in the early 2000s on 
PCSA and its derivatives hinged on 
making these polymers elastomeric.  
Kolel-Veetil and Keller explored two 
ways of effecting this [29].  In the 
first method, the concentration of 
diacetylene units was diluted in PCSA 
to impart elasticity to the polymers.  In 
the second method, different kinds of 
block polymers were incorporated in 
the PCSA and its variants, and their 
elastomeric properties as a function of 
the glass transition temperatures and 
corresponding thermal stabilities were 
evaluated [30].

Furthermore, Kolel-Veetil et al. 
expanded the utility of these polymers 
to produce transition metal (TM)-

derived nanoparticles (NPs) by reacting 
TM complexes with the diacetylene 
groups in PCSA to obtain molecular-
level functionalization [31].  In 
reacting PCSA with the TM complex, 
Cp2Mo2(CO)6, functionalization of 
the diacetylene occurred, and the 
TM-PCSA complexes on pyrolysis 
produced a superconducting mixture 
that contained β-Mo2C NPs and 
carbon nanotubes.  In a seminal paper 
that garnered the prestigious Berman 
Publication Award of NRL, Kolel-Veetil 
et al. demonstrated that by controlling 
the rate and temperature of pyrolysis, 
one could produce different phases 
of Mo2C NPs and therefore different 
conductivity properties for the mixture 

[32].  Thus, on pyrolysis only to 850 
oC, smaller (~2–4 nm)-sized α-Mo2C 
NPs were formed.  Due to the sizes 
being below the Anderson criterion 
limit, these NPs were unable to sustain 
superconductivity in a typical BCS 
system since the coherence length of 
the Cooper pairs was larger than the 
particle sizes [33].  When pyrolysis was 
performed up to 1000 oC, β-Mo2C 
of larger sizes was produced that 
sustained superconductivity with a Tc 
of ~5 oC (Figure 2).

In a similar vein, Kolel-Veetil et al. 
used a ferrocene-containing, siloxane-
diacetylene polymer like the one 
developed in 1998 [34].  They showed 

Figure 2.  TEM Micrographs of the 850 °C Pyrolysis Product Containing Predominantly 
(a) α-Mo2C NPs and (b) α-Mo2C NPs With a Few β-Mo2C NPs; and the 1000 °C Pyrolysis 
Product Containing (c) Larger β-Mo2C NPs and (d) Larger β-Mo2C NPs With MWCNTs 
(Source:   Reproduced With Permission From the American Chemical Society).

a c

b d
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that depending on the rate of thermal 
treatment, one could either form Fe 
NPs with CF and Si carbide or have 
carbon nanocapsules sequester both Fe 
and Si during reaction to produce the 
ferromagnetic Fe5Si3 NPs.

In 2009 and 2012, Kolel-Veetil et al. 
utilized the hydrosilation reactions to 
make new inorganic-organic hybrids 
of polyoctahedral silsesquioxanes 
(POSS), the smallest unit of silica [35, 
36].  In the first example, crosslinked 
dendritic networks of POSS units 
with diacetylene crosslinkers were 
synthesized [35].  In the second 
instance, crosslinked dendritic 
networks of POSS units with acetylene 

crosslinkers were synthesized [36].  
The latter allowed the production of 
α-cristobalite in the converted ceramic.

Finally, in 2013, Kolel-Veetil et al. 
were able to produce an inorganic-
organic polymer variant of PCSA, 
known as m-poly(carborane-
siloxane-arylacetylene) (m-PCSAA) 
and p-poly(carborane-siloxane-
arylacetylene) (p-PCSAA) by 
incorporating p-diethynylbenzene and 
m-diethynyl-benzene (Figure 3) [37].  
These variants have slightly higher 
thermal and oxidative stabilities than 
PCSA.  Impressively, they also protect 
high-performance organic fibers such 
as Kevlar, Zylon, and electrically 

conducting wires during operation 
at high temperature and voltage.  
Furthermore, these polymers also have 
exceptional dielectric properties.

TODAY’S POLYMERS
From 2013 to the present, various 
materials properties of these polymers 
have been explored that have created 
some exciting applications.  In 2020, 
PCSA, m-PCSAA, and p-PCSAA were 
licensed by the commercial entity 
Boron Specialties, Inc. in Ambridge, 
PA.  Many more exciting future 
applications are also being created 
for these inorganic-organic hybrid 
polymers.

CONCLUSIONS
While the science of siloxanes has 
come a long way since their discovery, 
the advent of inorganic-organic 
hybrid polymers has opened new 
possibilities for further evolution.  
The ultimate utility of the inorganic 
entities in the inorganic-organic 
hybrid siloxane polymers has been 
manufacturing DLO-producing 
oxide surfaces.  The organic groups 
function as crosslinking sites enabling 
the creation of thermosets and 
sites for TM-functionalization and 
yielding a very impressive suite of 
TM-containing compositions with 
exceptional conducting and magnetic 
properties.  Such developments have 
enabled the production of novel 

Figure 3.  (Top Box) The In-Backbone Aromatic Group-Containing 
Carboranylenesiloxanes m-PCSAA and p-PCSAA and Their Diacetylene Counterpart, 
PCSA.  (Bottom Box) Synthetic Schemes for m-PCSAA and p-PCSAA (Source:    
Reproduced With Permission From the American Chemical Society).
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coatings, functional particles, bulk 
materials, fibers, and composites 
that are very important to the Navy.  
Thus, further growth in the science of 
these polymers, contrary to Kipping’s 
trepidations, will only be limited by 
the imagination of the scientist. 
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INTRODUCTION

T his article explores several 
emerging applications 
of artificial intelligence 

(AI) and machine learning (ML) 
for U.S. Department of the Navy 
(DON) energy autonomy and 
digital transformation use.  It also 
summarizes relevant research and 
development efforts carried out by 
the University of Dayton Research 
Institute (UDRI) in a contract with 
the Naval Facility Engineering 
and Expeditionary Warfare Center 
(NAVFAC EXWC). 

BACKGROUND
U.S. Navy facilities have contributed 
a considerable fraction to the total 
energy consumption in the defense 
sector.  To reduce energy costs at 
these facilities, a series of research, 
development, and demonstration 
programs related to distributed 

and renewable generation, energy 
storage, and energy efficiency 
technologies have been accomplished 
in the past decades [1–5]. 

Energy systems at installations 
typically contain a variety of 
components connected to power-
critical missions or facilities.  
Traditionally, controls and 
optimization of energy systems at 
installations are addressed at the 
component levels (e.g., generator 
controllers, battery controllers, etc.).  
Solutions such as microgrids can 
provide improved resilience and 
performance [3–5], but challenges 
still exist in a highly autonomous 
operation condition.  For example, 
it is challenging to achieve real-time, 
system-wide energy optimization 
that can consider a look-ahead time 
horizon and prediction of different 
factors like load profiles, renewable 
energy availability, fuel/electricity 
prices, etc.  

Even in cases of parallel operation, 
multiple generators can operate 
at their full or partial capacities, 
leading to varying fuel efficiencies.  
For instance, the generators will 
need to adapt to different scenarios 
supporting the voltage or sharing 
active power or reactive power, 
particularly when the mobile 
generators are being rapidly 
deployed and connected in unknown 
situations [5].  Also, load shedding is 

expected to be based upon a dynamic 
priority level, which depends on 
the operation data, scenarios, or 
user preference.   Therefore, the 
enhanced situational awareness 
about generator fuel efficiency, load 
patterns, and the entire microgrid is 
essential to more efficient utilization 
of all generation and storage 
assets.  However, traditional control 
solutions do not capture or address 
all these factors effectively and may 
result in inefficiency and other issues 
(e.g., adaptability or resilience) in 
real-time operation. 

With the advances in sensor 
technologies, it is possible to install 
many cost-effective sensors in 
distributed power plants and load 
centers and collect and visualize 
the big data for hundreds or even 
thousands of parameters and 
variables [6, 7].  But a question 
remains on how we could use these 
large data sets to help improve 
energy generation/utilization 
efficiency and reduce energy costs.  
Since multiple complex energy 
conversion and flow processes 
exist in these energy systems, it is 
necessary to first figure out what 
data sets are most important and 
effective in generating energy savings 
and how they can be utilized to 
optimize operations before real 
benefits can be obtained.  Therefore, 
modeling the variety of energy flow 
processes, understanding the options 
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and impact of potential energy-saving 
technologies, and even automating 
energy saving processes are very 
important for facility managers to 
determine action plans for strategical 
facility upgrade and achieve improved 
autonomous operation practice.  

To address these challenges, the UDRI 
team recently proposed a unique 
solution that combines the benefits of 
data-driven Bayesian neural networks 
with a physics-guided learning 
framework where probabilistic 
weights are considered for learnable 
parameters [8–10].  This novel 
learning capability has been developed 
to enhance the predictive analytics and 
control system for microgrid operation 
(as shown in Figure 1) in a contract 
with NAVFAC EXWC.  Specifically, 

the system under development aims to 
optimize the operation of generators 
of different types, energy storage, and 
controllable loads at the system level 
in a resilient manner by leveraging 
the latest advances in ML, data 

analytics, predictive control, and real-
time computing.  This solution may 
help improve the energy forecasting 
accuracy, reduce energy costs across 
the Navy shore establishment, and 
reduce redundant equipment and DON 
new equipment orders.

FEATURES OF ML 
ANALYTICS
In the general field of AI, the current 
practice of ML aims to search 
nonlinear functions between the input 
and output variables to fit training data 
samples and update the weights and 
biases iteratively by using the gradients 
calculated from the errors between the 
predicted and labelled values [11–18].  

Data Visualization 
Capability

Machine Learning 
Modeling Capability

Real-Time Ops  
Optimization 
Capability

Real-Time 
Prediction 
Capability

Network  
Communication  
Capability

Colocated  
Hardware-in-the-
Loop Simulator

Figure 1.  Capabilities of an ML-Driven Energy Optimizer Under Development (Source:  Z. Jiang, S. C. Miller, and D. Dunn, Adapted 
From a Concept Design Art Image Codesigned by Advint LLC).
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This process targets seeking unknown 
or hidden correlations and patterns 
from training data in an implicit 
manner.  Because of this, the current 
ML paradigm has many limitations 
[14–18].  For instance, the iterative 
updating of weights/biases is fragile, 
relies on the gradients, and may not 
accurately reflect general correlations 
[14].  The classical training process is 
time-consuming and may sometimes 
result in overfitting or poor 
performance [15].  Typical point-
to-point predictions based on fixed 
values of the learned weights may not 
sufficiently capture the variations or 

uncertainty in the model parameters 
[16].  Slight variations in the input 
may also lead to large deviations in the 
predictions or wrong output results 
[17].  Probabilistic solutions exist, 
but they typically assume Gaussian 
distributions [18]. 

The unique solution recently 
developed at UDRI is a unified, data-
driven, predictive modeling and 
control method for energy systems.  
This solution is a physics-guided, 
Bayesian neural-learning framework 
with probabilistic weights for learnable 
parameters in the networks.  This 

approach can account for our prior 
physical knowledge, operational 
data, and uncertainty in the model 
altogether to gain insight into the 
energy systems’ behavior.  Basically, 
this learning framework can (1) model 
the causal relationships between 
cause/effect factors (i.e., input/output 
variables) in energy systems, (2) learn 
the system dynamics or temporal 
dependence from operational data, 
and/or (3) characterize the uncertainty 
or variability in the dynamic trends or 
parameters, as illustrated in Figure 2.  
To facilitate digital transformation, our 
three-pronged approach is a physical-

Figure 2.  Three-Pronged Approach to the Physical-Digital-Probabilistic Triplet Modeling Framework for Industrial Processes and 
Dynamic Systems (Source:  Z. Jiang, S. C. Miller, and D. Dunn).
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digital-probabilistic triplet modeling 
framework for industrial processes 
and dynamic systems.  This learning 
capability can thus be leveraged 
to enhance predictive analytics 
and optimal control strategies in 
planning, operating, and maintaining 
autonomous energy systems.  
Generally, application scenarios of this 
capability may include (1) predicting 
renewable power generation, load 
profiles, and cost/price trends; 
(2) dynamic model learning and 
calibrating the energy system; (3) 
quantifying uncertainty in stochastic 
energy production/consumption for 
asset planning or scheduling; and (4) 
real-time optimizing autonomous 
energy system operations for improved 
energy efficiency, quality, and 
resiliency.  

The effort in the NAVFAC EXWC-
UDRI partnership includes designing, 
developing, testing, and evaluating a 
suite of data-driven, ML-based models 
for energy prediction and an open-
architecture, ML-enabled predictive 
control system.  The outcomes from 
this work can be used to predict 

and optimize energy production/
consumption in microgrids or facility 
energy systems in real-time.  Such 
energy systems may typically contain 
distributed or renewable generation 
(e.g., solar or wind power), energy 
storage (e.g., batteries), and controllable 
load.   Key capabilities developed in 
this effort include the following, as also 
illustrated in Figure 1:

• Data-driven, ML-based modeling 
ability for energy systems with 
varying temporal, probabilistic, and 
categorical characteristics.

• Real-time energy prediction 
capability considering time-domain 
dynamics, uncertainty quantification, 
and causal relationships.

• Real-time operation optimization 
functionality. 

• Real-time hardware-in-the-loop 
(HIL) simulation with hybrid 
physics/learning-based models.

The capabilities developed in this 
effort can be leveraged to apply the 
digital engineering and model-based 
systems engineering approaches to 
other technology projects that involve 
complex systems of systems [19].  
For instance, these technologies can 
be transitioned to the U.S. Navy’s 
installation energy infrastructure (such 
as naval base facilities and microgrids), 
shipboard power systems, naval 
aviation operational energy systems, 
naval logistics, and/or naval enterprise 
systems.  Further, as options for future 

development and applications, those 
developed ML methods can be used in 
multiple stages of modeling and real-
time HIL simulation to achieve the 
following:

• Learn and validate a compact 
representation (e.g., a recurrent 
neural network-based model) of 
complex components or systems 
from offline operational data.

• Update and calibrate the model with 
online operational data (i.e., online 
learning capability).

• Learn the uncertainty in the model 
parameters/dynamics and consider 
the probabilistic variations and 
contingencies in the prediction. 

• Accelerate the real-time simulation 
and HIL testing with compact 
learning-based models (rather than 
complicated, compute-intense, 
physics-based models) for some 
components.

ML-ENABLED ENERGY 
OPTIMIZER
The effort performed by UDRI for 
a NAVFAC research, development, 
test, and evaluation contract laid 
out a foundation for system design, 
hardware prototype, software 
architecture, algorithms for model 
learning and predictive optimization, 
and HIL simulation models, as 
highlighted in Figure 1.  The energy 
optimizer’s “learning from operational 
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data” capability and look-ahead 
prediction mechanisms, designed for 
considering opportunistic optimization 
options to reduce costs, are what 
make it innovative.  This solution also 
improves data security and privacy by 
aggregating and embedding actionable 
intelligence about operation data 
into the learned models and only 
communicating the model structures 
and parameters over the network to a 
microgrid controller. 

The control system, based on ML 
and model predictive control (MPC), 
can dynamically integrate appropriate 
asset models (including generators 
and loads) into a real-time energy 
optimizer and generate optimized 

control actions for each individual 
asset, as shown in Figure 3.  This 
system consists of three closed loops 
for model calibration, equipment-level 
power optimization, and system-level 
energy optimization.  The controller 
is scalable and adaptive, building on 
open-architecture communication, 
and can be implemented on real-time 
processors and field programmable 
gate arrays [20].  The proposed 
solution considers different asset 
configurations and types and uses 
real-time operational data to learn 
and model various energy phenomena.  
More importantly, these models will 
be used in a real-time, learning-
enabled energy optimizer (through a 
model predictive control method) and 

incorporated into the online operation 
to optimize the configurations and 
operational settings.  To achieve this, 
the control system has multiple novel 
components connected in closed loops:  
(1) a learning-based modeling engine 
coupled with (2) a real-time predictor 
with scenario analysis for model 
calibration and (3) a real-time two-
layer model predictive controller for 
optimization.  It takes model data (e.g., 
model structure/parameters) as input 
and generates optimal control actions 
or setpoints for multiple generators or 
loads as output.

The control system has a hierarchical 
MPC structure (the outer two loops), 
with a higher-level MPC generating 

Figure 3.  Block Diagram of the Learning-Driven MPC System (Source:  Z. Jiang, S. C. Miller, and D. Dunn).
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commands for multiple assets and 
a lower-level MPC managing each 
individual resource.  The multilayer 
framework can decompose the control 
of the entire power system into layers 
or pieces of control territories that 
can be easily and efficiently managed 
and coordinated.  In this control 
framework, the higher-level MPC 
optimizes the energy losses and costs 
subject to dynamic load profiles and 
also maintains a dynamic level of 
reserved energy in storage to meet 
future power changes.  The lower-level 
MPC optimizes power management, 
i.e., regulating the currents while 
controlling the bus voltage.  This 
way, the power generators are not 
necessarily configured to meet peak 
power demand but just average 

demand.  

For example, an initial 
configuration of 

a small-scale 
microgrid 

might consist of a fuel-based, 
distributed generation system (e.g., 
diesel engine or gas turbine-driven 
generator), a battery energy storage 
system, renewable power sources 
(e.g., a solar generation farm), and 
controllable load banks.  These assets 
can connect with the utility grid and 
operate subject to time-of-use pricing 
signals.  The solar power generation 
may be operating at a maximum power 
point tracking mode, where the output 
power varies and depends upon the 
solar irradiance.  The generation costs 
(or energy conversion efficiency) of 
the fuel-fired generator may change 
with its output power.  The energy 
storage system can be charged and 
discharged with constraints, and power 
losses may vary at different rates.  
The energy losses in both the power 
generation and storage processes 
can be learned from historical and 
real-time operational data through 
ML approaches.  The load can be 
categorized into critical load and 

noncritical load, the latter of which can 
be temporarily reduced or turned off.

APPLICATIONS OF ML 
METHODS
The ML methods can be widely used 
in a model-based, systems-engineering 
approach.  These powerful enabling 
techniques can serve as a driving force 
for the general trend of the latest 
digital engineering transformation 
[19] and require the digital 
interconnectedness of tools, models, 
and data necessary for mission success.  
Several examples are outlined next.  

Utility Planning – Predictive 
Analytics

Renewable Energy Production 
Prediction

While renewable energy resources 
like solar and wind power are 
intermittent, the power production 
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from these assets correlates with the 
physical dynamics of solar or wind 
resources.  By leveraging the historical 
weather data or measurement data, it 
is possible to generate more insight 
about the varying trends in energy 
production [10].  Sample results are 
shown in Figure 4.  This prediction 
can be helpful in the utility’s planning 
and scheduling tasks.

Load Profile Forecasting

Public utilities typically give highest 
priority to load centers such as 
military bases.  Load profile prediction 
is important for energy resource 
scheduling and planning.  Load profiles 
can be predicted from historical data 
and operational conditions [21].  One 
application for load profile prediction 
is smart load shedding.  During grid 
outage/microgrid isolation events, 
ML methods could be used to predict 
future circuit loads and then used for 
shedding loads from a prioritized list 
of circuits.  A recent NAVFAC EXWC 
project involves testing and evaluating 
smart load shedding.    

Energy Efficiency Prediction

ML can play an effective role in 
learning and predicting the fuel 
consumption of distributed generators 
or energy efficiency in data centers 
[22].  It is also important to apply  
ML-driven control for energy efficiency  

improvement in electronics; computing; 
data centers; lighting; heating, venting, 
and air conditioning; etc.

Facility Management

Energy Management for Buildings 
or Vehicles 

The functions of renewable energy 
production prediction, load profile 
forecasting, and energy efficiency 
prediction also apply to energy 
management for naval facilities and 
buildings and various vehicles such as 
hybrid trucks [23, 24].  The anticipated 
benefits can be leveraged to produce 
a reusable, adaptive, real-time energy 
system optimizer for Navy use that 
can address the issues of increasing 
power/energy needs and truly enable 
energy savings while not sacrificing 
performance or mission capabilities.

Digital Twin for Test Facilities 

The developed capabilities, including 

Figure 4.  (Top) Results From the 
ML-Based Model for Solar Power 
Production Prediction [10] and (Bottom 
Main Image) Solar Power Installation 
on UDRI Campus (Source:  University of 
Dayton).
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the digital engineering tools and 
model-based systems engineering 
approaches, can be extended to 
develop digital twins for naval test 
facilities [25, 26].  A current EXWC 
Digital Twin project involves the use 
of grid-forming inverters with AI 
computer technology to establish a 
well-defined and accurate Digital Twin 
energy system to manage the energy 
resources.   

Predictive Maintenance

Similar techniques can be developed 
and leveraged to perform predictive 
maintenance, even considering the 
operational conditions and life-cycle 
use of the equipment and resources 

[27, 28].  The proposed control 
platform, which is modular and 
reconfigurable, will greatly reduce 
installation and maintenance costs and 
provide expeditionary power when 
speed, range, agility, and flexibility are 
critical to mission success.

Microgrid Applications 

Military Microgrids

Although a simple microgrid power 
system was modeled and tested in 
an HIL environment during a recent 
NAVFAC effort, the general approach 
applies to a wide range of military 
microgrid systems, such as based-wide 
microgrids [29, 30], expeditionary 

microgrids, or mobile microgrids [5], 
as shown in Figure 5.

Microgrid Test Bed

The techniques developed for 
microgrids can be easily transitioned 
to a microgrid test bed to facilitate 
testing activities, particularly with 
digital engineering tools and a model-
based systems engineering approach [31].

Shipboard Power Systems 

The developed technologies can be 
widely applied in shipboard power 
systems, especially those onboard 
electrified warships, due to their 
versatile energy flows and flexible 

Figure 5.  A Typical Application Scenario of an ML-Driven Energy Optimizer on a Military Base (Source: NAVFAC EXWC).

Power Distribution Unit Energy Optimizer Battery Microgrid Interface 
& Controller
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control opportunities.  These 
systems may involve complex energy 
components, such as prime movers, 
generators, energy storage, distribution 
circuits, and sophisticated loads 
like high-power radar or directed 
energy, with operational constraints.  
Optimized operation of propulsion/
power systems will reduce the system 
weight/size and improve the fuel 
consumption and operation costs of 
the military systems where power 
is used [32–34].  AI-driven digital 
engineering methods and tools 
can help reduce the development, 
acquisition, sustainment, or total 
ownership costs of fielded systems.  

Naval Aviation Operational 
Energy 

The Naval Aviation Operational 
Energy system, where safety, weight, 
size, maneuverability, and agility 
are high-priority features, can also 
benefit from the learning-enabled, 
model-predictive control scheme.  
The desired advantages may include 

predictive optimization in real-time, 
proactive actions prior to operational 
changes, and meeting economic, 
operational, or safety constraints in 
such systems.  The total operation 
costs can be considerably reduced 
by optimal dynamic energy reserve, 
decreasing energy losses, optimizing 
mission profiles, and benefiting from 
automated operation [35, 36].

ANTICIPATED BENEFITS/
RECOMMENDATIONS FOR 
FUTURE DEVELOPMENT
Previous efforts have laid out a 
systemic framework for energy 
modeling and developed a suite of ML-
driven models and methods for energy 
prediction and control.  The developed 
solution can significantly improve 
military capabilities due to enhanced 
power and energy performances 
enabled by AI technologies, even based 
upon existing commercial off-the-shelf 
power and energy sources only.  This 
solution will have great impact on 
U.S. Department of Defense (DoD) 
capabilities because it (1) captures the 
energy system dynamics, degradation, 
and uncertainty into the model in a 
data-driven manner, which would 
be difficult to capture or otherwise 
unavailable in the energy system 
models; (2) provides mechanisms for 
online continuous model learning/
validation; (3) enables fast (real-time) 
HIL simulation to gain insights into 
the system behaviors, greatly reducing 

the design and development time/
cost of military energy systems; and 
(4) empowers an integrated control 
platform to proactively manage the 
energy flows among the propulsion, 
power, and thermal subsystems to 
achieve higher efficiency and better 
performance and improve autonomy. 

The anticipated advantages of these 
methods must be validated in realistic 
application systems and may include 
energy savings, cost savings, and power 
quality and resilience improvements 
[37, 38].  Future efforts are expected 
to demonstrate prototypes of an AI-
driven predictive energy optimizer 
in improving energy resiliency on 
military installations and validate 
their advantages.  Specifically, the 
anticipated objectives of future 
demonstration and validation efforts 
may include the following: 

• Validate the effectiveness and 
accuracy of ML algorithms and 
models for forecasting generator fuel 
efficiency and load profiles based on 
operational data.

• Conduct power HIL testing 
of a prototype AI-driven, 
predictive optimizer to evaluate 
the effectiveness of learning-
based prediction and model-
based predictive optimization 
functionalities in a realistic 
microgrid.

• Perform field demonstration at a 
DoD installation site and validate 
the performance of the ML-driven 

Optimized operation of 

propulsion/power systems will 

reduce the system weight/

size and improve the fuel 

consumption and operation 

costs of the military systems 

where power is used.
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predictive optimizer prototype so the 
technology can be transitioned to the 
field faster.

As a recommendation for future 
development, ML can also be used 
in the test and evaluation stage to (1) 
screen and downselect test scenarios 
faster, (2) automatically analyze test 
data to determine correlations in 
system parameters or conditions, 
and (3) generate candidates of best 
design options.  In addition, ML can 
be leveraged for diagnosis/prognosis 
and preventive maintenance.  All these 
functions are closely related to digital 
engineering practice, with tangible 
benefits to the design, development, 
and testing of complex engineering 
systems.

CONCLUSIONS
The benefits and advantages of AI and 
ML can be expanded across the DoD’s 
power and energy ecosystems.  This 
article has briefly discussed several 
emerging applications of AI and ML 
technologies in naval energy autonomy 
and digital transformation.  As these 
applications are widely transitioned 
and deployed, the potential impact 
on operational autonomy will be 
more clearly understood and realized.  
While digital engineering tools such 
as AI and ML techniques improve 
the effectiveness and resiliency of 
autonomous systems and workflow 
efficiency, their impact will be 

multiplied and amplified when 
combined with other emerging digital 
technologies.  These may include 
sensor fusion through universal 
learning, predictive analytics by deep-
learning and data science methods, 
computational cognitive science, 
optimization techniques, quantum 
computing, and other technologies that 
can enable a deeper understanding of 
complex, integrated engineering system 
operations.  
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INTRODUCTION

C orrosion costs the U.S. 
Department of Defense 
(DoD) billions of dollars 

annually and heavily impacts the 
availability of DoD assets to carry out 
their missions [1].  The U.S. Navy is 
the hardest hit branch of the DoD, as it 
operates in the harshest environments 
with its assets exposed to seawater for 
extensive time.  In the 2021 “DoD 
Corrosion Prevention and Control 
Strategy” [2], corrosion maintenance 
and repair were estimated to cost the 
Navy $7 billion annually and led to 
11 million hours of maintainer repair 
time and lost flight time (as exemplified 
in Figure 1a).  In the time it took to 
read the previous sentence, corrosion 
cost the Navy $2,219.68.  Not only 
are ships and submarines constantly 
in direct contact with seawater, but 
Naval aircraft also operate primarily in 
the marine boundary layer containing 
high levels of aerosolized salts.  These 
sea salt aerosols contribute to aircraft 
corrosion while on a ship’s flight deck, 
during normal flight operations, and at 
land-based Navy installations.  Naval 
Air bases are typically near seawater 
but can vary from a few miles up to 
hundreds of miles.  Sea-spray aerosols 
can remain in the air for at least 25 km, 
contributing heavily to the amount of 
corrosion observed near coastal areas [3].

Recently, there have been discussions 
about moving from a fixed 
maintenance schedule to one driven 

by condition-based maintenance 
(CBM or CBM+).  Under this new 
paradigm, assets would be inspected, 
washed, and serviced based on the 
actual condition.  Specifically, this type 
of maintenance strategy would alter 
wash frequencies of aircraft to higher 
or lower frequencies, depending on 
the corrosion risk at the operational 
site (Figure 1b).  One of the simplest 

ways to do this is to differentiate 
sites by their proximity to a saltwater 
source.  However, this may not 
always be the best practice.  Ongoing 
work by DoD partners is examining 
this assumption by categorizing 
corrosion risk on a smaller scale and 
at individual locations rather than only 
using a map.  The local environment 
plays a large role in salt deposition, 

Figure 1.  (a) Corrective Maintenance of Nonskid Coating on a Ship Deck (Source:   
U.S. DoD) and (b) Preventative Maintenance via Aircraft Rinsing (Source:  U.S. Air Force).

a

b
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from wind direction and intensity to 
local vegetation, and moving just half 
a mile away can sometimes reduce 
the corrosion risk by an order of 
magnitude.  It is imperative that these 
local impacts are considered when 
categorizing a site and determining 
maintenance intervals.

CORROSION SEVERITY  
IN THE ENVIRONMENT
Corrosion processes are affected by 
environmental conditions, which 
can change the rate, chemistry, and 
morphology of the corrosion attack 
[4, 5].  Many climate types have been 
categorized in corrosion literature—
rural, suburban, urban, forest, highway, 
coastal/marine, industrial, alpine, 
tropical, volcanic, agricultural, and dry 
[6–8].  These sites are characterized by 
weather parameters and the chemistry 
of the atmosphere, which result in 
differences in corrosion across the 
different climate types, with marine 
and industrial sites often showing the 
highest levels of corrosion.  Commonly 
measured weather parameters in 
corrosion studies include temperature, 
relative humidity, precipitation, 
solar radiation, and wind speed and 
direction.  Because corrosion is an 
electrochemical process, a conductive 
moisture layer (very thin at times) 
is required on a metallic surface for 
corrosion reactions to occur, and 
the presence and characteristics 
of this layer are affected by these 

meteorological factors [9].  Thus, 
environments that are very hot and 
dry (which prevent the formation of 
these moisture layers on samples) tend 
to show low corrosion rates [4, 5].

The atmospheric chemistry also plays 
a role in the corrosion processes.  One 
of the most important environmental 
species is chloride ion, which is a 
major driver of the high corrosivity 
seen in many coastal and marine 
environments [7].  Other industrial 
pollutants such as sulfur and nitrogen 
oxide species and the ozone have also 
been shown to accelerate corrosion 
[10].  The proximity to the source 
of these corrosion-accelerating 
compounds will determine their 
concentration and effect at any given 
site.  Other parameters like wind 
strength and direction, surrounding 
vegetation, and other structures will 
also play a role.

An interesting example of the effect 
of climate on corrosion processes 
is a study that was done in Hawaii 
[3, 8].  Across the main Hawaiian 
island and the island of Oahu, eight 
different corrosion test sites were 
chosen to characterize the corrosion 
severity of the seven climatological 
environments across the state—
marine, industrial, tropical, volcanic, 
alpine, agricultural, and dry.  A wide 
range of environmental conditions 
(temperature, humidity, rainfall, solar 
radiation, chloride ion deposition rates, 
and other environmental chemistry 
factors) was observed across the test 

sites.  These environmental differences 
resulted in corrosion rates that varied 
by up to a factor of 40.

ACCELERATED CORROSION 
TESTING AND MODELING
Although there are American Society 
for Testing and Materials (ASTM) 
test methods for exposing bare 
and coated metals in a controlled, 
corrosive environment to determine 
relative corrosion resistance and 
coating behavior, the prediction and 
correlation of corrosion performance 
of “accelerated exposure tests” in 
environmental chambers like salt 
spray (B117) to field environments 
are not always straightforward [11].  
Existing test methods do not address 
the simultaneous exposure of various 
atmospheric and environmental 
conditions that can affect corrosion 
performance of a bare or coated 
metal.  They also do not address the 
need to correlate results of exposure 
chamber tests with exposure to 
outdoor atmospheres and end-user 

One of the most important 

environmental species is 

chloride ion, which is a major 

driver of the high corrosivity 

seen in many coastal and 

marine environments.

29Special Edition  //  Navy



performance.  Many investigations 
have been performed in recent years 
to clarify the role of environmental 
and climatic factors in the atmospheric 
corrosion of commonly used structural 
metals and coatings as well as simulate 
their observed corrosion behavior 
in the laboratory [12–16].  It is well 
documented that corrosion behavior 
of metal substrates in accelerated 
laboratory tests does not correlate 
with the observed performance in 
an outdoor exposure environment 
[17–19].

The first step toward developing 
better accelerated test methods is to 
analyze and accurately reproduce these 
environments in a laboratory setting.  
A successful, accelerated test method 
would therefore be environmentally 
“tunable” and provide accurate, 
predictable results for any substrate 
with any type of protective barrier 
layer or coating present.  To achieve 
this goal, a new state-of-the-art 
accelerated combined effects simulation 
(ACES) exposure chamber is currently 
undergoing testing by the U.S. Air 
Force (USAF) Research Laboratory 
in collaboration with the U.S. Naval 
Research Laboratory (NRL) to replicate 
field conditions and corrosion behavior 
of various alloys, coating systems, 
and corrosion/environmental sensors.  
This chamber was built to include 
more environmental effects than 
any previous exposure chamber to 
accurately mimic a field environment 
that includes temperature and 
humidity control, ultraviolet (UV), 

mixed gasses, and actuators to simulate 
mechanical stresses.

BACKGROUND OF 
ENVIRONMENTAL 
SEVERITY INDICES
Early attempts to correlate the 
environment with corrosion of DoD 
assets goes as far back as the 1960s 
under the U.S. Air Force Logistics 
Command, where the focus was 
to develop a corrosion severity 
classification for each operational 
airbase as part of the Corrosion 
Prevention and Control program 
(redesignated as Project RIVET 
BRIGHT in 1971) [20].  The program 
was redesignated as PACER LIME in 
1972 and was a two-phase effort—
develop a mathematical algorithm 
to calculate a corrosion factor 
that combined weather and other 
environmental factors and measure 
corrosion severity at selected locations 
through atmospheric tests, allowing 
for the calibration of the corrosion 
factor calculated from the algorithm.  

This corrosion factor had a range of 
values:  1.00–2.00 (severe), 2.01–2.85 
(moderate), and 2.85–3.75 (mild).  As 
a result of that study, a system was 
developed for rating the corrosivity 
of aircraft operational environments, 
considering environmental variables 
such as weather, atmospheric 
pollutants, and geographical factors by 
Summitt and Fink [20].  The purpose 
was to compute a corrosion severity 
index for three aspects of corrosion 
maintenance—aircraft washing, 
repainting, and maintenance repairs.  
These indices were derived from the 
corrosion factor ranges and were 
thus labeled as mild, moderate, and 
severe.  The corrosion severity index 
for each airbase location was then used 
to schedule the frequency of aircraft 
wash cycles.  It was reported that 
the computed severity ratings agreed 
with aircraft maintainers’ experience 
and atmospheric testing programs at 
several DoD locations.  These indices 
were incorporated into Technical 
Order (TO) 1-1-691 in 1996 [21].

Meanwhile, the Naval Air Systems 
Command (NAVAIR) 01-1A-509 [22] 
and 16-1-540 [23] Technical Manuals 
(TMs) were combined in 2005 into 
NAVAIR TMs 01-1A-509 Volumes I 
(Corrosion Program and Corrosion 
Theory) [24], Volume II (Aircraft) 
[25], and Volume III (Avionics and 
Electronics) [26], which superseded 
NAVAIR TO 1-1-689 [27] from 2000.

In 2008, Battelle Columbus published 
“A Decade of Corrosion Monitoring 
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in the World’s Military Operating 
Environments:  A Summary of 
Results” [28].  It describes an effort 
(1998–2008) to quantify and refine 
categories in the USAF TO 1-1-691 
[21] in 2009 for aircraft wash cycles 
and maintenance actions.  This attempt 
was based upon Battelle’s program 
of placing “corrosion monitoring 
packages” consisting of well-defined 
corrosion cards containing bare metal 
coupons (i.e., similar sized, cleaned, 
and initial mass values recorded) 
at military bases worldwide for 
predetermined periods.  Upon return 
from the field, the coupons were 
cleaned and the resulting mass loss 
per unit area for each coupon was 
measured and recorded, thus yielding a 
corrosion rate for the exposure period 
at a particular site.

One of the results of this study was 
an algorithm for corrosion prediction 
based upon the corrosion card 
mass loss and silver chloride film 
measurements, which only considered 
environments at greater than 70% 
relative humidity (RH), excluding 
the effect of temperature and sulfur 
dioxide in the statistical analysis [28].  
The resulting Environmental Severity 
Index (ESI) classifications were based 
upon the corrosion rate of AA2024-T3 
aluminum and also described as mild, 
moderate, or severe.  International 
Organization for Standardization (ISO) 
Standard 9223:2012(E) [29] lists six 
different corrosivity categories (low 
to extreme) and uses the percentage 
exposure time above 80% RH.  Overall, 

more than 40 years of modeling 
attempts have been made to predict 
the rate of atmospheric corrosion 
and/or severity for a given metal 
substrate [30].  While numerous 
models have been developed, they all 
require inputs of environmental data 
as well as corrosion mass change data; 
obviously, a model is only as good as 
the data used for its calibration and 
development.  It is apparent that very 
few, if any, of the models developed 
were ever independently validated [30].

RECENT NAVY EFFORTS

Strategic Environmental 
Research and Development 
Program – Environmental 
Security Technology 
Certification Program 
(SERDP-ESTCP) Projects

Current work funded by SERDP-
ESTCP is examining the link between 
corrosion risk and environmental 
implications.  The environmental and 
mechanical loading conditions govern 
the overall lifetime survivability and 
maintenance cycles of protective 
coatings.  A model that can better 
predict maintenance based on 
accumulated damage will enable 
maintenance cycles to be performed 
only when necessary, as opposed to 
overly conservative, periodic time-
based maintenance intervals based on 
worst-case scenarios.  Using a CBM+ 
approach reduces the exposure of 
both personnel and the environment 

to hazardous paint strippers and 
hexavalent chromium used in many 
primers.  By evaluating each asset 
based on service history and expected 
future exposure, maintenance will 
be done when required based on 
usage/exposure history.  To achieve 
the desired state, better modeling 
of coating and material lifetime 
performance need to be developed.

Furthermore, a combined model of 
real-world fatigue and corrosion 
damage for DoD assets does not exist.  
By generating data that simulates a 
real-world environment and inputting 
this information into a predictive 
model, better decisions can be made 
to the service intervals and reducing 
the number of man-hours spent on 
systems with potentially hazardous 
materials to refurbish the asset.  The 
objective of this project is to generate 
a Bayesian network model to predict 
coating and lifetime performance 
based on a CBM+ approach.  The 
resulting model could be used to 
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better inform life-cycle maintenance 
costs and adjust the schedules for 
planned maintenance.  Successful 
implementation will reduce inspection 
costs and unnecessary repainting and 
better prioritize key asset maintenance.  
Model inputs should reflect what the 
real-world experience of the asset 
is in terms of environment, loading, 
and maintenance.  Figure 2 shows 
what some of the considerations are 
for studying DoD aircraft (Figure 2a).  
Tailored for tackling DoD needs, the 
NRL-Key West facility implements 
rinsing and covering modifications 
(Figure 2b) to mimic what aircraft 

experience.  Fasteners (Figure 2c) 
are places where protective coatings 
are often breached and material 
incompatibility leads to corrosive 
attack, so modeling efforts are 
concentrated at these hot spots.  
Dynamic loading of simulated aircraft 
structures (panels, fasteners, coatings, etc.) 
in outdoor environments provides a 
higher level of testing fidelity (Figure 2d).  

Field Exposure Testing

Current efforts to improve ESI 
research and development include 
standardizing how ESI work is 

conducted.  The Association for 
Materials Protection and Performance 
(AMPP) SC-07 Ad Hoc Group 
is developing a standard titled 
“Environmental Spectra for Severity 
Classification,” which brings together 
the atmospheric corrosion community 
to codify best practices and state-of-
the-art understanding of the current 
problem.  Three focus areas include 
sample design (what samples will be 
exposed and how), data acquisition 
(how data are collected), and data 
analysis (how data are interpreted 
and what the significance is for 
ESI).  Critically, this standard will 

Figure 2.  One Strategic Outlook on How the DoD Invests Research Into Atmospheric Corrosion to Counteract Its Effect on Mission 
Readiness (Sources for a and c Are U.S. Air Force; b and d Are S. Stanke, Excet).

Mimic real service conditions (a, b):  mimic 
maintenance practices

Identify at-risk components (c):  
fasteners are common fail points

Collect and analyze data (d, b) 
overcome:  real environment, real 
loads

a

cb d
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consolidate a common vocabulary 
across the field, allow data sharing 
and encourage collaborations, enable 
a data network for long-term and 
large-area assessments, increase 
measurement accuracy and precision, 
and provide well-defined inputs for 
modeling efforts.  Examples of what 
this standard addresses based on 
currently agreed-upon best practices 
include sample size and classification, 
data acquisition through coulometric 
reduction and surface profilometry, 
and core environmental variables to 
collect during exposure.  The samples 
on the rack in Figure 3 show sample 
size and classification, and the large 
vertical box behind the rack collects 
the core environmental variables. 

Corrosion Modeling

Several DoD-funded corrosion 
modeling efforts are currently 
underway that involve various forms of 
data collected from different locations.  
Atmospheric corrosion proceeds via 
several processes in sequence and/
or parallel across multiples classes of 
matter—the atmosphere, condensed 
aqueous solution, polymer coatings, 
oxide scales, precipitated salts, and 
microstructurally heterogeneous metal 
alloys (see Figure 4).  Multiple physical 
and chemical phenomena contribute 
to the corrosion process, including 
mass transport, electrochemical effects, 
metal dissolution, grain-boundary 
transport, etc.  For this reason, using 
fundamental physics or chemical 
principles makes it difficult to directly 
predict the corrosion rate of a metal 

in its environment.  Likewise, it 
is difficult to directly extrapolate 
the results of short-term tests to 
long-term tests solely from physical 
principles.  A data-driven modeling 
approach can assist in identifying the 
key environmental factors driving 
atmospheric corrosion.

One example is the use of machine 
learning (ML) and artificial neural 
network (ANN) modeling to identify 
leading meteorological factors that 
quantitatively control the extent 
of corrosion [24].  The systematic 
collection of atmospheric corrosion 
data has enabled the application of 
ML techniques to understand the most 
critical elements (Figure 4) impacting the 
differences in the amounts of corrosion 
observed in AA2024-T3 samples 
placed at three locations on the Florida 
coastline.  The data were processed 
according to the three metrics of mass 
loss per unit area, linear corrosion 
rate, and a parabolic corrosion 
constant, as well as generating 
additional data by sample differencing 
that considers cumulative corrosion 
occurring between time periods.  An 

Figure 3.  Instrumented Exposure Rack With Corrosion Test Coupons at NRL-Key West 
(Source:  D. Hansen).  
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automated approach was developed 
that can query public and/or pay-to-
access websites for environmental data 
to construct an exposure profile for 
a sample placed at a known location 
(specified by latitude/longitude) and 
over a given range of dates.  ML 
algorithms (feature selection and 
ANNs) were used to determine the 
most significant environmental features 
impacting the extent of atmospheric 
corrosion through sensitivity analysis.  
Five key variables were determined 
to have a quantitative effect on the 
corrosion rate and mass loss per unit 
area collected over 18 months of 
exposure—mean precipitation, the 
range of temperatures, the minimum 

wind speed, the variability of ozone 
exposure, and the maximum solar 
irradiance [31].  This systematic 
approach could be applied to other 
materials of interest, different 
locations, and other metrics of 
corrosion (e.g., localized corrosion 
depth and pitting volume) to advance 
the understanding of how the 
environmental conditions can directly 
influence the corrosion behavior of 
materials.

CHALLENGES AHEAD
Transitioning from a schedule-based 
maintenance program to a condition-
based maintenance program within 

the DoD requires several issues to 
consider—how to categorize the 
corrosion severity occurring on the 
assets in the field and how to use 
the classifications to make informed 
decisions relating to weapon system 
maintenance, as well as DoD 
infrastructure (construction, storage, 
etc.).  Another issue is how many 
classifications are appropriate.  Are 
three categories enough (TO 1-1-
691 as mild, moderate, or severe), six 
(ISO 9223 as C1-CX), or possibly 10?  
Studies have shown that it is possible 
to get significantly different levels of 
corrosion for different materials; so 
which should be used for the severity 
ranking?  If the goal is to determine 
a corrosion severity for each DoD 
location, is it possible to rank a facility 
with more than one category, or do we 
use an average for multiple locations at 
the facility?  Ultimately, can corrosion 
and environmental sensors reliably 
provide real-time information so that 
the corrosion severity of a location can 
be determined, allowing maintenance 
cycles to be adapted for season-season 
or year-year variability or even longer-
term effects like climate change?

CONCLUSIONS
Collaborative efforts continue among 
the research arms of the Navy and 
Air Force to standardize the field 
exposure tests yielding data that will 
be used to categorize the corrosion 
severity rankings for DoD locations.  
In addition to field exposure testing, 

Figure 4.  Components Needing Consideration in Modeling of Atmospheric Corrosion—
Types of Material, Surface Types, Deposits, and Time-Dependent Processes [24].
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a new state-of-the-art ACES exposure 
chamber is currently undergoing 
testing to replicate field conditions 
and corrosion behavior of various 
alloys, coating systems, and corrosion/
environmental sensors.  The 
combination of real-world corrosion 
data from depot and field exposure test 
sites, advanced modeling techniques 
utilizing artificial intelligence and 
ML, and cutting-edge exposure 
simulation chambers will ultimately 
provide a basis for a more accurate 
characterization of the corrosion 
severity for DoD locations around the 
world.  Realization of a condition-
based maintenance program across 
the services is not as far away as once 
thought. 
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A POTENTIAL 
MISSING LINK

Understanding the Bow Topside Flow Field of the 
USS Zumwalt for Hypersonic Missile Launching:  

BY PETER J. DISIMILE AND SYED QASIM ZAHEER   
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INTRODUCTION

W hat happens when a 
hypersonic missile 
is launched from a 

Navy destroyer?  Aside from the 
forthcoming damage effects and 
political fallout, there are a million 
complex physical interactions that take 
place right at the moment and place 
of the launch.  One area of important 
study is the flow field around the 
launch system on the Navy destroyer 
to which it is integrated.  Full-scale 
testing is an unrealistic method to 
understand such an environment 
for various reasons (e.g., cost, safety, 
resources, etc.).  Therefore, we have 
conducted computational fluid 
dynamic (CFD) simulations to better 
characterize the flow field at the 
bow topside of a simplified model 
destroyer for the intended safe launch 
of conventional prompt strike (CPS) 
hypersonic missiles.  

Recently, a numerical study 
characterizing the turbulent flow field 
of a simplified model having geometry 
and a Reynolds number resembling 
the USS Zumwalt was performed and 
revealed the existence of leading-edge 
vortical structures and a superstructure 
base vortical structure.  The turbulent, 
integral-length scales of these vortical 
structures are of the order of the 
geometric diameter of a CPS missile 
and would interact with the missile 
during their initial launch phase, 
generating unfavorable aerodynamic 

side forces.  These forces would 
potentially cause a perturbation in 
the initial trajectory of the missile as 
well as introduce excessive vibration 
and rubbing of the missile within its 
canister.  An understanding of the 
turbulent flow and vortical structures 
in the bow region of the Zumwalt 
class destroyer will help identify 
regions of lowest disturbance where 
the multiple all-up canisters (MACs) 
tubes may be safely installed and 
launched.  For this purpose, the 
influence of superstructure shape 
modification, depicting the Zumwalt 
class destroyer, on the bow flow field 
is also investigated.   

BACKGROUND
Research studies related to the 
flow field analysis of frigates and 
destroyers, including both realistic 
and simplified models like the SFS2 
(simplified wind tunnel model for 
frigates) and ONRT (simplified wind 
tunnel model for the USS Zumwalt), 
have been directed toward turbulence 
characterization over the flight deck 
region [1–4].  Analysis of airwake 
turbulence over the flight deck is 
important to quantify pilot workload 
and handling qualities of helicopters 
while performing seaboard operations, 
including hovering, landing, and 
takeoff maneuvers.  Active and 
passive control strategies have also 
been studied to reduce the impact 
of turbulence motions on handling 
qualities of the helicopters over the 

flight deck, significantly influencing the 
pilot workload [5].  

CFD efforts have also focused on 
the flight deck region where the 
turbulence models have been validated 
against the wind tunnel results, 
performed at a reduced flow Reynolds 
number (Re), and compared to the full-
scale prototype.  Although geometric 
similarity is maintained, generally 
1:200, 1:100, and or 1:60 in the wind 
tunnel tests, the dynamic similarity 
between the model and prototype was 
not achieved due to the limitation of 
experimental facility.  This means that 
the flow ReH (based on free stream 
velocity and superstructure height) of 
the wind tunnel model differs from 
the prototype by approximately 2 to 
3 orders of magnitude.  However, to 
overcome this limitation, it has been 
observed that beyond ReH of 2 × 104, 
the airwake characteristics over the 
flight deck region of frigates/destroyers 
are found to be ReH independent [6].  
However, these scaling factors need to 
be incorporated on the prototype when 

Analysis of airwake 

turbulence over the flight 

deck is important to quantify 

pilot workload and handling 

qualities of helicopters 

while performing seaboard 

operations.
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using wind tunnel results.  Currently, 
the experimental and numerical results 
of scaled down model are restricted 
to the flight deck region.  Little or no 
attention has been given to the flow 
field in the ship’s Bow region, hence 
becoming the focus of the current 
research. 

Characterizing the turbulent flow field 
of a full-scale unmodified, simplified 
model (SFS2) using CFD revealed 
the existence of the bow leading-
edge vortical structures and vortical 
structure at the superstructure base 

(Figure 1).  Since the geometric 
ratios, bow shape, and Re number of 
the simplified frigate model are very 
similar to the Zumwalt class destroyer, 
turbulent vortical structures are also 
expected in the bow region of the 
USS Zumwalt (or ONRT).  As shown 
in Figure 1, the Navy has intended 
to integrate CPS hypersonic weapons 
on the Zumwalt class destroyer by 
replacing one or both gun mounts with 
the MACs [7].  These gun mounts are 
currently installed in the bow region.  
Research efforts addressing the bow 
region flow field are becoming more 

relevant for the intended safe launch 
of CPS hypersonic missiles.  Therefore, 
it is necessary to estimate scales of 
turbulence, intensity, and turbulent 
kinetic energy (TKE) as well as the 
orientation of the vortical structures 
at the probable CPS missile locations 
on the bow of the USS Zumwalt.  
Understanding of these turbulent 
vortical structures will highlight 
potential interactions with the missiles 
during the initial launch phase by 
generating unfavorable aerodynamic 
forces and causing disturbances in 
the initial missile trajectory.  The 
simulation results can help decision-
makers select a favorable location for 
MAC installation. 

To bridge this research gap, 
preliminary research is carried out to 
critically investigate the bow topside 
flow field without launching the 
missile.  The idea is to understand 
the undisturbed or unmodified bow 
flow field first to help identify regions 
of least disturbance for installation 
and safe launch of CPS missiles.  As 
a continuation of this research, the 
initial launch trajectory of the CPS 
missile under the influence of bow 
turbulence will be simulated at a later 
stage.  For this purpose, the full-scale, 
simplified frigate model (SFS2) is 
analyzed numerically and validated 
with available experimental data.  
Since the bow geometric dimensions 
and configuration of SFS2 are like 
the ONRT, dynamic flow similarity 
is expected between these simplified 
wind tunnel models of frigates and 

Figure 1.  (Top) Proposed Location of the MAC Tubes on the USS Zumwalt [7], (Bottom) 
Identification of Bow Leading Edge and Base Vortices of the SFS2 [7], and (Insert) 
SFS2 Model Sketch [8].
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the Zumwalt class destroyer.  The 
geometric shape of the superstructures 
of the SFS2 and ONRT are different.  
Therefore, the forward face of the 
superstructure on top of the bow 
region of the SFS2 is modified to 
resemble the ONRT, and its impact 
on the bow flow is examined.  (The 
unmodified SFS2 will be referred as 
the “Clean SFS2,” whereas modified 
superstructure geometry to resemble 
ONRT will be referred to as “Mod 
SS.”)  Carrying almost 80% of the total 
TKE, the integral scales of turbulence 
at the probable CPS missile integration 
location are quantified, along with the 
distribution of turbulence intensity, 
kinetic energy, and vorticity at 
different streamwise locations along 
the bow.  A comparative dynamic flow 
analysis between the Clean and Mod 
SS geometries of the simplified frigate 
model (SFS2) is also presented.

NUMERICAL SETUP

Methodology

The emerging trends in the literature 
suggest that scale-resolving turbulence 
models like the large eddy simulation 
(LES) and the detached eddy 
simulation and their variants perform 
better for the numerical simulation of 
unsteady and bistable airwake of SFS2 
than the Reynolds-Averaged Navier-
Stokes (RANS) turbulence models.  
Capturing the wake bimodality 
(i.e., switching the stable states of 
the bistable airwake) using a well-

resolved LES turbulence model is 
computationally expensive but viable, 
as found in the relevant CFD studies of 
similar domains of airwake bistability 
concerning the Ahmed body (simplified 
model for car aerodynamics).  The 
high computational cost for an LES 
simulation is a restrictive factor.  
Therefore, in this research, the 
embedded LES (ELES) turbulence 
model is used, which is a hybrid 
RANS/LES turbulence model based on 
a zonal approach in which the RANS 
and LES turbulence models are used in 
predefined zones.  In most cases, the 
LES zone is declared as the region of 
interest, and this zone is placed inside 
a global RANS zone.  Such a technique 
bridges the gap between the high 
computational cost requirement of the 
full LES approach and inadequacy of 
the RANS models for such unsteady 
flow simulations.  

To perform the ELES simulation, an 
a priori simulation using the standard 
k-ε RANS model is performed.  
Using this precursor solution, the 
integral length scales (lo ~ k3/2/ε) of 
the turbulent structures in the flow 
field of SFS2 are estimated.  Based 
on the minimum accepted value of 
the integral length scales, the mesh 
inside the LES zone is refined.  The 
most important step in performing 
an accurate ELES simulation is 
designating the LES fluid zone inside 
a global RANS domain.  In the ELES 
turbulence model, the LES turbulence 
model is used during the simulation 
only within the declared or predefined 

LES fluid zone, whereas the standard 
k-ε RANS turbulence model is used 
to simulate the flow field, thereby 
reducing the computational cost 
compared to performing an LES 
turbulence model in a complete 
fluid zone.  As detailed in previous 
research [8, 9], four different cases 
were simulated wherein the RANS-
LES interface was defined at a different 
streamwise location along the length 
of SFS2 geometry.  This analysis 
[9] revealed that once the complete 
geometry of the SFS2 was placed 
inside the predefined LES fluid zone, 
the numerical results agreed with the 
experimental data set.  The flowchart 
in Figure 2 indicates the steps 
performed in an accurate simulation 
of the SFS2 flow field using the 
embedded ELES turbulence model.  

Setting

To numerically simulate the flow field 
of the geometric version of the SFS2, 
a fluid domain is created around the 
vessel whose boundaries extend to 
5L (L = length of SFS2) on both the 

The most important step in 

performing an accurate ELES 

simulation is designating the 

LES fluid zone inside a global 

RANS domain. 
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POST
PROCESSING

• Comparison of  
turbulence models

• Mesh independence for RANS 
zone

• Precursor results for LES zone

• Estimation of integral length 
scale (lo~k3/2/ε)

• Mesh refinement in LES zone 
based on lo

• Placement of RANS-LES 
interface at different locations 
to study its influence

• Synthetic turbulence defined 
using vortex method at RANS-
LES interface

• No perturbation at LES-RANS 
interface

• Activation of LES zone inside 
global RANS fluid domain

• WALE subgrid scale model 
used in LES zone

• Mesh assessment:

 » Cell convective Courant 
number

 » LES index of quality for mesh 
resolution assessment

• Validation of numerical scheme

• Finalization of placement of 
RANS-LES interfaces

• Time-averaged flow field

• Turbulent coherent structures

• Iso Q-criterion contours

• Vorticity, TKE, TBL distribution

• Correlation analysis

• Spectral analysis

EMBEDDED LES  
SIMULATION

MESH REFINEMENT & 
ELES SETUP

STEADY RANS  
SIMULATION

Figure 2.  Flowchart of the Methodology Using the ELES Turbulence Model (Source:  P. J. Disimile and S. Q. Zaheer).

starboard and port sides, and the inlet 
is defined as an arc having a radius 
of 5L from the bow.  The outlet is 
placed at 6L from the stern, and the 
top boundary is located at 1L from 
the bottom surface.  Velocity inlet and 
pressure outlet are used as boundaries.  
The surface of the SFS2 is defined 
as a wall boundary condition with a 
no-slip boundary condition, whereas 
the bottom surface of the domain is 
also defined as a wall with zero shear 
(Figure 3).  The top surface is defined 
as a symmetric boundary condition.  A 
structured mesh is generated on the 
surface of the SFS2 and then a prism 
layer with a maximum y+ value of less 
than 40 having 25 inflation layers.  A 
zone of higher mesh resolution, termed 
as the inner zone, is created around 
the SFS2.  The rest of the outer fluid 
domain is coarsely meshed; therefore, 
nonconformal mesh interfaces are 
generated between the inner and  

Figure 3.  (Top) Meshed Fluid Domain With Boundary Conditions and (Bottom) Meshed 
Interfaces of the Embedded LES Fluid Domain With a Global RANS Domain (Source:  P. J. 
Disimile and S. Q. Zaheer).
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outer fluid zones.  A uniform velocity 
of 40 kts (20.6 m/s) is defined at 
the inlet, which corresponds to 
ReH of 2.26 × 107.  An atmospheric 
pressure equal to 1 atm is defined 
at the pressure outlet.  The air is 
treated as incompressible fluid, and a 
pressure-based solver is used with a 
second-order accurate discretization 
scheme for the momentum, turbulence 
quantities, and time.  A simple pressure 
velocity coupling solver is used.  The 
viscous boundary layer on the surface 
of the ship model is calculated using 
a standard wall function since the y+ 
value of the prism layer lies in the 
logarithmic (log) law region of the 
boundary layer.  Given the Clean 
geometry of the SFS2 and the very 
high ReH flow, the prism layer can take 
on a relatively higher value of y+. 

After the mesh refinement in the 
respective LES zone and based on 
the precursor RANS simulation, the 
LES zone is activated in the defined 
fluid zone and the solution setup is 
changed from steady to transient, 
with a time step equal to 100 μs.  
The transient ELES simulation is 
run for approximately two flow 
convective times before the unsteady 
flow statistics are collected for time 
averaging.  The simulations are run 
for 35 seconds of physical flow time.  
Since the geometry of the SFS2 model 
is such that the separation of flow is 
governed by the sharp edges and steps 
rather than typical viscous boundary 
layers, the height of the viscous 
sublayer of the developed turbulent 

boundary layer is small.  At such a high 
ReH, the placement of the first mesh 
node in the wall normal direction in 
the log law region is rationalized [10].  
Using the y+ ≤40 in the LES zone 
renders the mesh unable to resolve 
the wall in the LES simulation, which 
would otherwise have required a very 
high computational cost.  Therefore, 
to model the near-wall dynamics in 
the subsequent ELES simulations, a 
special subgrid scale wall model called 
the Werner-Wengle Model [11] is 
activated in Fluent 19.0 (from Ansys 
in Canonsburg, PA) in which the 
instantaneous velocity profile follows 
the law:

u+(y) =
y+

,
if y+ ≤11.81

A(y+)B otherwise{
where A = 8.3 and B = 1/7.  This 
approach makes it possible to place 
the first layer of the mesh in the 
logarithmic layer (i.e., the inertial 
subrange).  Such an approach had been 
adopted by different researchers in the 
past, especially for separated flows like 
the Ahmed car body [12], high-rise 
building dynamics [13], and prediction 
of flow-induced noise [14].  The results 
were found to be in better agreement 
with the experimental data at reduced 
computational cost compared to 
performing a wall-resolved LES 
simulation.  The grid in the LES zone 
for ELES, after refinement, results in 
a mesh cell count of 8.4 million in the 
LES zone and 1.4 million in the RANS 
zone.

Validation

The resolution of the turbulence 
having length scales of interest is 
a very important contributor for 
accurate simulation of the flow 
field using the ELES turbulence 
model.  This resolution is achieved 
by numerical discretization of the 
fluid domain, i.e., mesh size.  The 
assessment of the mesh resolution in 
the LES zone of the fluid domain is 
carried out using the LES index of 
quality (LES-IQ).  The LES-IQ is a 
nondimensional number having values 
from 0 to 1, where values closer to 1 
indicate a mesh resolution high enough 
to capture flow dynamics of the large-
scale turbulence.  The histogram of the 
distribution of this index inside the 
LES zone is plotted in Figure 4, which 
clearly indicates that almost 95% of the 
cell count has an LES-IQ index greater 
than 0.85.  The Courant-Friedrichs-
Lewy (CFL) number distribution inside 
the LES zone also indicates CFL<<1 
in almost the entire fluid domain, 
suggesting an accurate time step size is 
chosen for the simulation.

The resolution of the 

turbulence having length 

scales of interest is a very 

important contributor for 

accurate simulation of the 

flow field using the ELES 

turbulence model. 
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Figure 4.   (Left) Histogram of the LES-IQ and (Right) CFL Distribution Within the LES Domain (Source:  P. J. Disimile and S. Q. 
Zaheer). 

To validate the numerical setup, the 
velocity profiles along the vertical lines 
at locations A–D are plotted (Figure 5).  
These results are compared with the 
experimental values obtained using fast 
response probes and particle image 
velocimetry techniques [1].  Although 
there is a mismatch in ReH between 
the numerical and experimental setup, 
the qualitative assessment of the 
velocity profiles obtained numerically 
reveals very good agreement with 
the experimental values and provides 
confidence in the simulations using the 
ELES technique.  The asymmetry in 
the profiles of measurement locations 
A and D is also captured in the 
present research.  A slight offset in the 
magnitude of CFD results is attributed 
to the fact that an atmospheric 
boundary layer was incorporated in 
the experiment, whereas a uniform 
velocity profile inlet is defined in the 
current simulations.  

To validate the flow field upstream 
of the flight deck, i.e., around the 
superstructure of the SFS2 geometry, a 

widely used data set obtained from the 
National Research Council-Canada [2] 
was used as reference.  The streamwise 
and vertical velocity components are 
plotted at the forward and aft lines, 
and the results are compared with the 
experimental values.  The difference 
between the ReH of the experiment and 
the current ELES simulation, i.e., O(2) 
less than the numerical simulation, 
as well as the use of reduced order 
scaling of the SFS2 geometry in 
experiments, allowed qualitative 
comparison only.  The trends of the 
CFD velocity profiles closely follow 
the experimental values, thereby 
validating and revealing the efficacy 
of the current simulations.  The 
literature suggests that there is ReH  
independence for the wake dynamics 
of bluff bodies above ReH = O(104).  
Hence, it is clearly visible from the 
plots (Figure 5a) that although there is 
an ReH mismatch, the nondimensional 
velocity distribution follows the 
same trend as the experimental 
data.  However, the dataset recorded 
upstream of the airwake (Figure 5b) 

indicates that ReH independence is 
limited to the airwake dynamics only 
and does not apply to the upstream 
flow field.

BOW FLOW FIELD 
ANALYSIS

Vortex Dynamics

Once the numerical methodology and 
turbulence models were validated 
against the available experimental 
dataset for the simplified frigate model 
SFS2, the bow flow field was analyzed 

The trends of the CFD velocity 

profiles closely follow the 

experimental values, thereby 

validating and revealing 

the efficacy of the current 

simulations.
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extensively.  To better represent 
the geometric features of the USS 
Zumwalt, the superstructure of the 
SFS2 was modified by incorporating 
the slanted and trifaceted forward 
face of the superstructure using the 
Zumwalt’s geometric ratios (Figure 6).  
The flow field of the Clean and Mod 
SS geometries of the SFS2 is compared 
from here onward to understand 
the influence of superstructure 
modification on the bow flow field. 

The instantaneous vortices generated 
on the bow region are visualized using 
the isosurface Q-criterion surface plots 
(Figure 6).  On the bow region are the 

leading-edge vortices, attached to the 
top of the port and starboard sides is 
the bow, and a base vortex is generated 
at the foot of the superstructure’s 
forward face.  These vortical structures 
influence the bow topside flow field.  
A detailed investigation revealed that 
the coherent base vortex was much 
stronger for the Clean geometry than 
the modified superstructure (Mod 
SS) case.  Moreover, the leading-edge 
vortices also interacted with the base 
vortex upon reaching the forward face 
of the superstructure.  This interaction 
is more constructive on the starboard 
side than the port side; thereby, the 
time-averaged vorticity of the base 

vortex becomes asymmetric across the 
midplane of the SFS2 geometry and 
biased toward the starboard side and 
can be observed by the mean swirl 
strength plotted along the core of 

A detailed investigation 

revealed that the coherent 

base vortex was much 

stronger for the Clean 

geometry than the modified 

superstructure (Mod SS) case. 

Figure 5.  Comparison of Numerically Simulated Velocity Distribution at (a) Over the Flight Deck Along Vertical Lines A–D and (b) 
Along the Forward and Aft Lines Over the Superstructure, With the Experimental Dataset [1, 2].

a

b
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the base vortex.  The biasness of the 
mean swirl strength of the base vortex 
toward the starboard side is presented 
in detail in Zaheer and Disimile [8].  It 
has been observed that more or less 
constructive interaction of leading 
vortices with the base vortex is due to 
the rotation direction of these vortices.  
The base vortex and starboard side-

edge vortex have clockwise rotation, 
whereas the portside-edge vortex 
rotates anticlockwise.  It can also be 
observed that the mean base vortex of 
the Clean configuration is very strong 
near the midplane, as opposed to the 
Mod SS configuration.  However, 
toward the edges of the bow, i.e.,  
z/b = ±0.5, a higher swirl strength 

than the Clean SFS2 geometry is 
observed due to coherence and 
strength of the leading-edge vortices 
for the Mod SS configuration.  The 
Mod SS configuration also has a 
symmetric mean swirl distribution.       

The strength of the base vortex also 
influences the structure and size of the 
leading-edge vortices.  This is because 
the base vortex generates a suction 
effect by entraining the incoming fluid; 
hence, a stronger base vortex would 
entrain more fluid than a weaker, 
incoherent one.  This entrainment 
of incoming fluid would generate a 
suction effect on the topside of the bow. 
Therefore, the leading-edge vortices of 
the Clean geometry are observed to be 
larger than the Mod SS configuration.  
Moreover, referring to the topside 
views of the vortical structures (Figure 
6a and b), the faceted and slanted 
forward face of the Mod SS enables 
the formation of leading-edge vortices 
like the conventional delta wing.  

A primary (large) and secondary 
vortex system along the leading 
edges is generated.  The secondary 
vortex is found to be attached to the 
leading edges, whereas the primary 
vortex traverses inward toward the 
midplane, similar to a typical delta 
wing vortex system.  However, in the 
Clean geometry case, there is only one 
strong, coherent, vortical structure 
along the top edges of the bow.  The 
clear disparity between the structure 
of leading-edge vortices of the two 
configurations supports the argument 

Figure 6.  Isosurface Q-Criterion Plots of (a) Clean and (b) Mod SS Geometric Versions 
of the SFS2 and (c) Mean Swirl Strength Along the Core of Mean Base Vortex of Both 
Configurations (Source:  P. J. Disimile and S. Q. Zaheer).
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that the base vortex does influence the 
leading-edge vortices.  These vortices 
in the Mod SS case remain coherent 
even after they travel downstream 
of the bow and onto the sides of the 
superstructure, whereas those of the 
Clean geometry break down once they 
leave the bow region. 

Turbulence Characteristics

The potential installation of MACs 
carrying CPS hypersonic missiles 
on the USS Zumwalt would be 
accomplished by removing the existing 
two-gun mounts on the topside of 
the bow.  These gun mounts are 
approximately positioned at X/Lb 
(Lb = length of bow) of 0.5 and 0.8 
downstream distance from the front 

tip of the bow at the midplane (see 
probe locations B12 [front gun mount] 
and B9 [rear gun mount] in Figure 
7a).  Therefore, in this section and 
the subsequent section, the turbulence 
parameters and the included integral 
scales of turbulence are analyzed 
specifically at these locations for 
the Clean and Mod SS cases of the 
SFS2.  The percentage root mean 
square (RMS) fluctuations in the 
streamwise, vertical, and lateral velocity 
components, i.e., urms, vrms, and wrms, are 
plotted across the width of the bow at 
stated streamwise distances.  The mean 
TKE is also plotted along the same 
lines.  These measurements are carried 
out at y/H = 0.25 from the surface of 
the bow.   

Analyzing the distribution of the 
RMS velocity fluctuations across the 
width of the bow at two different 
streamwise locations reveals that 
overall, the magnitude of fluctuations 
is low for both the configurations.  It 
is also observed that in the middle 
or the central region of the bow at 
both streamwise distances, i.e., X/Lb 
of 0.5 and 0.8, the fluctuations in the 
streamwise component of the velocity 
are higher than the vertical and lateral 
components for both configurations.  
Moreover, the fluctuations in the 
central region are higher for the case 
of Clean geometry than the Mod SS 
configuration.  The magnitude of Urms 

fluctuations becomes stronger at 0.8X/
Lb than 0.5X/Lb.  However, toward the 
edges of the bow, contribution from 

Figure 7.  (a) Probe Locations for Measurement of Velocity Spectra and (b) Resultant Auto Correlation Analysis Using Different 
Velocity Components (Source:  P. J. Disimile and S. Q. Zaheer).
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the fluctuating vertical and lateral 
velocity components is stronger for 
the Mod SS than the Clean SFS2 
configuration.  This trend is attributed 
to the strong coherent leading-edge 
vortices of the Mod SS configuration. 
Likewise, the trend is duplicated in the 
distribution of the mean TKE across 
the bow region at two streamwise 
locations for both the configurations.  
From this analysis, it is suggested that 
the location of the rear gun mount 
experiences greater flow disturbances 
than the front gun mount location.  
Therefore, the front gun mount should 
be considered as a more favorable 
region for MAC installation because it 
experiences less turbulence.     

Integral Scales of Turbulence

The autocorrelation of the velocity 
spectrum recorded at different 
locations on the bow region of the 
Clean and Mod SS SFS2 configurations 
is plotted in Figure 7 and compared 
to address the influence of the vortical 
system and configuration on the 
turbulent integral length scales of the 
eddies. 

Probes B4/B5 and B6/B7 essentially 
capture the flow dynamics of the 
leading-edge vortices on the port and 
starboard sides of the bow.  The B4/
B5 probes, located upstream to the 
front gun mount location, influence 
the B12 probe, whereas B6/B7 probes 
predominantly influence the B9 (rear 
gun mount location) flow field.  The 
vertical (v) velocity fluctuations in 

the near vicinity of the leading edges 
are dominant for both configurations 
(Figure 8).  Hence, the auto correlation 
coefficient (rii) at the B4 and B6 probes 
is calculated using the v-velocity 
component.  Since the trends of rii for 
corresponding starboard side probes 
are observed to be similar, they are not 
included.  The correlation coefficient 

at the B12 and B9 probes is calculated 
using all three velocity components to 
analyze and investigate the dominant 
influence of leading-edge vortices.  
The first zero crossing of rii is taken 
as the criterion for assessing integral 
scales of turbulence at respective 
probe locations.  For the B4 and B6 
probes, the slope of the rii regarding 

Figure 8.  Distribution of Percentage RMS Values of the Turbulent Velocity 
Fluctuations at (a) X/Lb = 0.5, (b) X/Lb = 0.8, and (c) Mean TKE for the Clean SFS2 and 
Mod SS Cases (Source:  P. J. Disimile and S. Q. Zaheer).
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lag time is observed to be higher 
for the Mod SS case than the Clean 
geometry, signifying the existence of 
a significantly smaller integral scale 
of eddies compared to the Clean 
geometry.  Moreover, for both the 
configurations, the scales of eddies are 
larger for the B6/B7 probes than the 
B4/B5.  

The plot of rii for B4 probe 
measurement of the Mod SS 
configuration exhibits secondary 
periodic peaks that affirm the stated 
argument of existing secondary 
vortices along the leading edge of 
the configuration, which are missing 
for the Clean geometry.  Owing to 
relatively larger-scale turbulent eddies 
at the leading edge of the Clean 
geometry configuration, their influence 
is pronounced in the rii spectrum of 
gun mount probes, as exhibited by 
periodic reenergization of the curve 
before it crosses the zero rii line.  This 
means that the turbulent eddies at 
the front and rear gun mount probes 
of the Clean geometry configuration 
are periodically reenergized by the 
leading-edge vortices.  

The input of TKE from the leading-
edge vortices influences the streamwise 
velocity spectrum at the B12 and B9 
probes.  However, for the Mod SS 
configuration, the flow field at these 
probe locations is less influenced by 
the leading-edge vortices due to their 
smaller scales.  The integral scales 
of turbulent eddies are larger for the 
rear gun mount probe location than 

the front one for both configurations.  
Therefore, the front gun mount should 
be considered as a more favorable 
region for MAC installation and safe 
launch of CPS missiles. 

CONCLUSIONS
This article explores the research 
gaps in the turbulent flow field and 
airwake characterization of the 
simplified model frigate/destroyers 
(i.e., an in-depth analysis of turbulence 
and associated vortical structures 
on the bow region of the simplified 
frigate model like the SFS2).  The 
investigation of the bow topside flow 
field becomes pivotal for possible 
integration of MACs carrying CPS 
hypersonic missiles on the bow of the 
USS Zumwalt by replacing existing 
gun mounts.  In this research, the bow 
flow field of the Clean and modified 
superstructure Mod SS (resembling 
ONRT) configurations of the SFS2 
is analyzed and compared to predict 
the influence of superstructure 
modification on turbulence and 
vortical structures.  It has been 
observed that the system of turbulent 
vortices, including the leading-edge 
vortices and base vortex, highly 
influences the bow topside flow 
field.  Moreover, the base vortex for 
the Mod SS case was found to be 
significantly weaker than the Clean 
configuration.  Therefore, its influence 
on the upstream leading-edge vortices 
is negligible.  The analysis of turbulent 

intensity distribution, TKE, and the 
integral scales of turbulence reveals 
that the front gun mount is a favorable 
location for MAC installation as 
opposed to the rear one since it is 
located within a region of relatively 
higher turbulence; thereby, an adverse 
influence during initial launch 
trajectory of CPS missile is expected.  
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Attributing Mission Performance to
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BACKGROUND AND 
MOTIVATION

S ubmarine design is a 
multifaceted process requiring 
extensive effort spanning 

across various disciplines and 
organizations.  Part of this effort is 
deciding which missions a submarine 
is expected to conduct and assessing 
its efficacy, or mission effectiveness, 
in those missions via constructive 
simulation.  This approach—
characterizing a notional platform 
and simulating its performance in 
stressing tactical situations—has been 
and continues to be the foundation of 
most analytic products produced by 
the warfare analysts of the Undersea 
Warfare Mission Engineering and 
Analysis Department of the Naval 
Undersea Warfare Center Division 
Newport.  It allows analysts to 
quantify the effect of different aspects 
of the platform, such as its acoustic 
profile or maneuverability, in terms 
of mission effectiveness.  They can 
then answer questions such as, What 
sort of payloads should the submarine 
have to meet its mission goals, or what 
sensing capability is required to meet a 
threshold of mission effectiveness?

To ensure that a submarine concept 
can meet mission requirements, the 
conceptual submarine must first be 
adequately characterized, typically by 
defining features such as the type of 
sensor systems it possesses, how it 
maneuvers, its acoustic profile, and 

its weapon composition.  It can then 
be assessed across relevant, stressing 
scenarios, many of which may have 
competing objectives.  For instance, 
a conceptual submarine may favor 
the use of torpedoes in one mission 
while preferring the use of missiles 
for another.  Stowage aboard the 
platform is limited due to spacing, 
so the decision must be made as to 
how to balance both the number and 
type of weapon to meet competing 
mission requirements.  By simulating 
submarine performance across various 
missions, analysts can quantify the 
trade-offs associated with each design 
decision. 

While much is to be gained from 
this approach, stakeholders may find 
themselves limited when attempting 
to gauge the mission effectiveness of 
a platform at input levels that were 
not originally run as part of the 
constructive simulation.  For example, 
if three levels of submarine speeds—5 
knots, 15 knots, and 25 knots—were 
simulated as part of a study and the 
customer was interested in what the 
associated mission effectiveness at 
10 knots would be, the customer 
is relegated to mental means of 
interpolation to estimate the quantity.  
While this is achievable in lower 
dimensional space, it quickly grows 
difficult in the presence of additional 
attributes (such as submarine acoustic 
profile, maneuverability, and sensing 
capability), as does the visualization 
of these estimates.  Furthermore, that 
customer may not have the operational 

context and assumptions (threat 
capability or environmental conditions) 
readily available to make informed 
design decisions. 

It is through the Undersea Warfare 
Mission Engineering and Analysis 
Department’s Mission Effectiveness 
(ME) Dashboard that analysts 
and customers can rectify these 
shortcomings and facilitate the 
concept assessment process.  This 
article will review the capabilities of 
the Dashboard, the mapping models 
that translate architectural design 
components into Dashboard inputs, 
and its application in evaluating a 
notional submarine concept with 
the goal of attributing mission 
performance to the submarine 
concept’s subsystems.

INTRODUCTION
The ME Dashboard is a browser-
based tool designed to allow users to 
understand and study background and 
assumptions, quantify relationships 
between performance attributes, 

By simulating submarine 

performance across various 

missions, analysts can 

quantify the trade-offs 

associated with each design 

decision.
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generate new data, make predictions, 
conduct constrained optimization, 
and visualize outputs as part of 
the process of making informed 
submarine design decisions.  The 
Dashboard’s landing page is shown 
in Figure 1, where all attributes and 
their values with the surrogate models 
are arbitrarily chosen and meant to 
illustrate the Dashboard’s capabilities.  

By quantifying the military utility of 
submarine subsystems, the Dashboard 
can be used as a scoping mechanism 
to identify those technologies that 
require further study and analysis.  
The scoping process begins with naval 
architects who develop conceptual 
submarine designs, each consisting of 
thousands of descriptive parameters 
such as displacement, weight, length, 
diameter, and sensor configuration.  
Conceptual submarines may have 
unique features that do not easily align 
with existing submarine classes.  The 

architects want to know the designs 
are worth additional study by assessing 
how well they would perform in 
several mission contexts and learn 
more about the impact of different 
design components on mission 
effectiveness.  Furthermore, they 
wish to determine if improvements 
can be made to the design and, if 
so, what sensitivities exist, and what 

are the minimal amount of changes 
that can be made to yield the largest 
improvement in mission effectiveness?  
Answering these questions comes 
with several challenges, as there is 
a translation required that maps the 
design components of the submarine 
to mission inputs.  This scenario 
is typical of the questions warfare 
analysts face and can answer via 
mapping models in conjunction with 
the Dashboard.  After briefly reviewing 
the different aspects of the Dashboard, 
we will return to this scenario to 

review mapping models and see how 
it can be employed to address the idea 
of attributing mission performance to 
submarine subsystems.

THE ME DASHBOARD 

Prediction

The foundational competency of 
the ME Dashboard is its predictive 
capabilities.  Derived from the 
ideas of response surface methods 
associated with classical experimental 
design techniques, the Dashboard 
houses a collection of statistical and 
machine-learning models that act 
as fast-running surrogates to slower 
running, higher fidelity models.  These 
higher fidelity models are used to 
simulate submarine performance 
for each mission it is expected to 
conduct.  The inputs and outputs from 
these simulations are captured as the 
covariates and response variable used 
in the training/fitting of the surrogate 
models in a supervised fashion. 

These surrogates provide estimates of 
what the higher fidelity models would 
produce if they were used to simulate 
over inputs of interest.  The Dashboard 
houses the following types of surrogate 
models:

• Elastic net regularized regression

• Generalized additive models 

• Binary logistic regression

• Beta regression

• Binary Gaussian processes

• Treed Gaussian processes

Figure 1.  The ME Dashboard Landing Page (Source:  J. Proule). 
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• Gradient-boosted trees

• Multiadaptive regression splines

• Feed-forward neural networks

Which surrogate model is applied 
to which mission depends on the 
type of input data that is under 
consideration.  Lower dimensional, all-
numeric data tend to be represented 
well by Gaussian processes; this class 
of surrogate models can capture 
the predictive variance of numeric 
data that does not exhibit any step 
function-like behavior.  Conversely, 
data with many categorical features 
may be better fit with tree-based 
models.  These surrogate models may 
be stacked or combined/extended 
via boosting, bagging (bootstrap 
aggregation), or other ensemble 
methods and may require additional 
feature engineering on the original 
data produced from the simulation run 
with the higher fidelity model.  The 
only constraints on the surrogates 
are that they are relatively quick to 
load and operate (does not exceed five 
seconds) and they generate predictions 
with low (<3%) generalizable error 
(a measure of how accurately an 
algorithm can predict outcome 
values for previously unseen data).  
This generalizable error is assessed 
via different kinds of nested cross-
validation or other forms of out-of-
sample assessments such as train-test-
validation sets and bootstrapping.  To 
help reduce this generalizable error 
and foster the creation of highly 
predictive surrogate models, the higher 
fidelity models typically simulate 

over specialized experimental designs 
that allow nonlinear effects to be 
realized.  These experimental designs 
are often space-filling designs that 
offer exceptionally strong coverage 
over the tradespace of interest or they 
may be a hybrid between space-filling 
and classical experimental designs 
(fractional factorial or D-optimal 
designs).

Through its user interface, the 
Dashboard offers users the ability 
to upload data or manually enter it 
within the browser and then generate 
predictions with the click of a few 
buttons (Figure 2).  There are no 
command-line interactions or coding 
requirements, and users can download 
predictions for further analysis.

Inference and Visualization

In addition to downloading the 
predictions generated from the 
surrogate models within the ME 

Dashboard, users have the option to 
investigate the predictions via various 
visualizations and inference methods.  
They can employ any of the following 
to graphically depict their predictions 
or the example datasets that come with 
each housed mission:

• Heatmaps

• Treemaps

• Scatterplots and scatterplot matrices

• Sunburst plots

• Parallel coordinate plots

• Correlation matrices/plots

The Dashboard offers users 

the ability to upload data or 

manually enter it within the 

browser and then generate 

predictions with the click of a 

few buttons.

Figure 2.  Data Upload Window Screenshot for a Single Mission in the ME Dashboard 
(Source:  J. Proule).
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• Histograms

• Density plots

• Boxplots

While these techniques are useful 
means to quickly identify and plot 
trends and gradients within the data, 
users are also supplied with options 
to quantify these trends via more 
rigorous means like the following:

• Individual conditional expectation 
plots

• Partial dependency plots 

• Beeswarm and waterfall plots 
to visualize SHapley Additive 
exPlanations (SHAP)

• Breakdown plots

• Variable importance plots

• Sobol indices plots

• Friedman’s H-statistic plots

• Plots to visualize t-distributed 
stochastic neighbor embedding and 
principal component analysis

• Plots to visualize anomalies 
quantified via autoencoders

All these visualization and inference 
approaches are model agnostic; they 
can be applied to any of the surrogate 
models listed in the subsection titled 
“Prediction.”  Many of the more 
computationally intensive techniques 
have already been applied to the 
example datasets for each mission and 
come preloaded within the Dashboard 
to provide a starting intuition about 
the data.  For instance, by examining 
the precomputed variable importance 
plots, users may learn that the speed 
of the submarine was the most 

influential factor within the context 
of a specific simulated mission.  They 
may use the partial dependency 
plots to identify the general trends 
speed has across different missions 
and what minimal average speed 
is required to meet a threshold of 
mission success.  A submarine design 
can be tailored to meet that speed 
while then being modified with other 
considered influential attributes.  
This modification can happen using 
counterfactual analysis, which is a 
process by which users can identify the 
minimal changes in inputs that yield 
a desired output via multiobjective 
optimization.  It can be done in a 
constrained fashion wherein some of 
the inputs are not permitted to change.  
Within the context of the Dashboard, 
this technique allows analysts to 
determine if major improvements in 
mission success can be achieved within 

the local tradespace and, if so, what 
changes need to be made to the inputs’ 
variables.  It can help guide analysts 
on how to reach a desired threshold 
measure of effectiveness given a 
specified starting point.

Figure 3 shows an outlier investigation 
window of the Dashboard, 
where outliers are highlighted 
in the histogram of autoencoder 
reconstruction errors for a mission.  
The selected points are described in 
a summary table and automatically 
highlighted in a scatter plot and  
SHAP plot.

Operational Context

The ability to generate and visualize 
predictions can be an incredibly 
powerful capability, but it can also 
prove damaging and lead to faulty 
conclusions if lacking the requisite 

Figure 3.  Outlier Investigation Window Screenshot of the ME Dashboard (Source:  J. 
Proule).
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background knowledge.  Without a 
strong understanding of the underlying 
assumptions of the simulation inputs 
that generated the data in the first 
place or how a measure of effectiveness 
is calculated, the user has the potential 
to misunderstand or misrepresent the 
outputs to decision-makers.

To help remedy this issue, the ME 
Dashboard comes with briefs for 
each of the corresponding missions 
(Figure 4).  Partial dependency plots 
are drawn for a selected attribute 
that is categorical in one mission and 
continuous in another mission.  Study 
briefs detailing the development and 
results of a constructive simulation 
for each mission are hyperlinked in a 
table that also shows correlations of 
attributes shared between missions.  
These briefs are generated by 
analysts as part of their customer 
deliverables and typically provided 
as a static analysis in PDF format 

upon the study’s completion.  They 
detail how the higher fidelity model 
was constructed, what intelligence 
sources and environmental inputs were 
used, what tactics were employed, 
what third-party dependencies and 
collaborations existed, and what 
insights were gained from running 
the simulation.  Complementing the 
briefs are graphics associated with each 
mission mapped on a globe to provide 
a less intensive but faster review of 
the operational context of the mission.  
By incorporating these elements into 
the Dashboard, users can understand 
the underlying implications of the 
predictions they are generating.

Application and Mapping 
Models

Returning to the scenario in the 
Introduction, suppose there are three 
missions that can be used to assess 
the efficacy of a submarine design—

Mission A, Mission B, and Mission 
C.  Each of these requires a unique set 
of tactics stressing different aspects 
of the submarine’s build (information 
that is detailed in the briefs housed 
in the ME Dashboard).  For each 
mission, a high-fidelity model is used 
to simulate combinations of relevant 
inputs and generate a metric of 
interest (i.e., some form of probability 
of success).  We see this represented in 
Figure 5, where the authoritative model 
(high-fidelity model) ingests measures 
of performance (relevant inputs to 
the high-fidelity model) as well as 
contextual information to produce 
a measure of effectiveness.  Once 
the simulations in the high-fidelity 
model are complete, the outputs are 
used to generate three briefs and 
three separate surrogate models (one 
for each mission) to comprise the 
surrogate model set housed within the 
Dashboard.  The predictions resulting 
from the surrogate models are used to 

Figure 4.  Screenshot of the ME Dashboard Landing Page (Source:  J. Proule). 
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explore the tradespace by generating 
various explanatory visualizations 
that highlight the sensitivities present 
in each mission and quantify the 
marginal impact of each attribute.  
The platforms with many torpedoes 
and higher speeds tended to do well 
in Mission A, whereas platforms with 
lower radiated noise and lower speeds 
did better in Mission B.  While these 
insights help guide the architects in 
their conceptual submarine design, 
more information is required to help 
establish a concrete link between their 
designs and the impact on mission 
effectiveness.

To establish this link, one first must 
recognize that many of the simulation 
inputs are measures of performance 
rather than architectural design 

decisions and do not map directly 
back to the architect’s plans.  For 
instance, the speed of a submarine is 
not an architectural component but 
rather a calculated byproduct of its 
design.  Submarine propulsion, along 
with diameter and other drag-related 
features, combine to produce a speed.  
Similarly, the number of weapon 
tubes in conjunction with storage 
and launching systems dictates the 
submarine’s weapon salvo rate.  These 
features require mapping models to 
translate the effect of design decisions 
on measures of performance, which 
can then be ingested by the surrogate 
models to generate measures of 
effectiveness (or mission success).  

Figures 5 and 6 depict the process 
of how a third party is required to 
convert architectural components 
into surrogate model inputs.  In the 
previous example, a payload’s working 
group may act as the mapping model 
needed to convert the number of 
torpedo tubes and launching systems 
(which fall within the architectural 
design components of Figure 6) 
into a salvo rate that can be used 

by the simulation.  This salvo rate 
is a measure of performance that 
can be used to generate a prediction 
of mission effectiveness with the 
surrogate model. 

These mapping models are often 
exceedingly complex, physics-based 
models that have been developed for 
years and maintained and improved 
by highly trained domain experts.  
The subject matter expertise of these 
domain experts is leveraged to convert 
architectural design components into 
inputs that can then generate the 
measures of performance used by the 
surrogate models.

To further illustrate the importance 
of a mapping model, we consider 
a submarine’s methods of 
communications with external entities.  
While getting more information can 
be beneficial in directing a search 
for a threat platform, it also puts the 
submarine at risk of being detected by 
surface/air assets and can reduce its 
search rate due to slowed speeds and 
changing acoustic profiles in the water 
column.  There is both a cost and 
benefit to increasing and decreasing 
the frequency of communications.  
In the context of a high-fidelity 
constructive model that simulates 
the submarine in a mission requiring 
communications between platforms, 
the frequency is simply represented as 
a scalar value dictating how often the 
submarine receives information; there 
is no direct link to its architectural 
components.  A mapping model 

Figure 5.  Submarine Concept 
Evaluation Flowchart (Source:  J. 
Proule).

The speed of a submarine 

is not an architectural 

component but rather a 

calculated byproduct of its 

design.

Measures of Effectiveness

Surrogate Model

Mapping Model

Submarine Concept Model

Architectural 
Design

Measures of 
Performance

56 DSIAC Journal  //  2024



is required to translate this scalar 
value to communication subsystems, 
such as different types of masts.  
Different masts can have major design 
implications and force the architect 
to include different technologies 
into the conceptual submarine.  It is 
through these mapping models that 
a submarine subsystem defined by 
architectural means can be linked 
to measures of performance (a 
communications cycle) that can then 
be ingested by the surrogate models to 
produce a measure of effectiveness.

After generating the predicted 
measures of performance through this 
translation process, analysts can assess 
how well a design can complete the 
three different missions by uploading 
its characterization into the Dashboard 

and generating predicted measures of 
effectiveness.  How well a conceptual 
submarine does in each mission is 
largely contextually dependent—all 
nondesign attributes like location, 
season, or threat speed vary to yield 
a spectrum of mission effectiveness 
for each mission.  Analysts can 
visualize how a single design fares 
against competing designs that 
have previously gone through this 
process if it can be considered an 
outlier and improvements can be 
made.  Furthermore, they can use 
the optimization tools present in the 
Dashboard to find counterfactuals.  
For example, if a specific design was 
expected to have a 63% probability of 
success in Mission B and the threshold 
architects were attempting to meet was 
75%, they can identify the minimal 

amount of change necessary to 
characterize the design that will yield a 
75% success rate.

Given this information, the analyst 
must then coordinate with the 
architects and subsystem experts 
to translate these measures of 
performance back to architectural 
features of the conceptual submarine 
design (see Figure 1).  It is in these 
translations (the mapping models) 
where much of the difficulty lies 
and conflicting assumptions across 
organizations operating these tools 
are possible.  Much of the success of 
the mission-effectiveness attribution 
process depends on this translation 
process and is still in the development 
process.

Figure 6.  Information Flow From Architect to Analyst (Source:  J. Proule).
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CONCLUSIONS
By relying on surrogate models to 
quickly evaluate thousands of possible 
conceptual submarine designs while 
bypassing the slow revisitation of 
the authoritative model, analysts can 
eliminate low-performing designs 
and, with the aid of mapping models, 
attribute varying levels of mission 
success to different subsystems.  A 
vital step in this process, the mapping 
models necessitate a communicative, 
iterative pipeline between architect 
and domain experts to produce the 
measures of performances required by 
the ME Dashboard, where analysts can 
perform the following:

1. Conduct sensitivity analysis 
to identify high-gradient areas 
in the tradespace or areas that 
meet minimum thresholds of 
performance across different 
missions.

2. Identify what attributes are 
common to succeed in multiple 
missions.

3. Identify the highest performing 
scenarios to see if/when 
specialization matters.

All three aspects help the architect and 
analyst identify the locally optimal 
submarine design that yields the 
highest military utility given cost and 
building constraints.  Of course, this 
approach is not limited to submarine 
design.  Such benefits are transferable 
across industry, as these techniques 

are germane to applications that rely 
on high-fidelity, slow-running models 
or physical, real-world tests that are 
expensive and difficult to coordinate.  
Using these techniques, organizations 
can make the intelligent choice on 
how to focus their efforts for further 
analysis and investment. 
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