Creature Feature: Twisting Cracks Impart Superhero Toughness to Animals

Home / Articles / External Non-Government

purdue_university_mantis_shrimp_dactyl_club_w

July 30, 2018 | Originally published by Date Line: July 30 on

WEST LAFAYETTE, Ind. – Super-resilient materials found in the animal kingdom owe their strength and toughness to a design strategy that causes cracks to follow the twisting pattern of fibers, preventing catastrophic failure.

Researchers in a recent series of papers have documented this behavior in precise detail and also are creating new composite materials modeled after the phenomenon. The work was performed by a team of researchers at Purdue University in collaboration with University of California, Riverside.

The researchers studied the preternatural strength of a composite material in a sea creature called the mantis shrimp, which uses an impact-resistant appendage to pummel its prey into submission

“However, we are seeing this same sort of design strategy not just in the mantis shrimp, but also in many animals,” said Pablo Zavattieri, a professor in Purdue’s Lyles School of Civil Engineering. “Beetles use it in their shells, for example, and we also are seeing it in fish scales, lobsters and crabs.”

New findings show that the composite material of the club actually becomes tougher as a crack tries to twist, in effect halting its progress. This crack twisting is guided by the material”s fibers of chitin, the same substance found in many marine crustacean shells and insect exoskeletons, arranged in a helicoidal architecture that resembles a spiral staircase.

“This mechanism has never been studied in detail before,” Zavattieri said. “What we are finding is that as a crack twists the driving force to grow the crack progressively decreases, promoting the formation of other similar mechanisms, which prevent the material from falling apart catastrophically. I think we can finally explain why the material is so tough.”

The findings are now helping the development of lighter, stronger and tougher materials for many applications including aerospace, automotive and sports.

The appearance of external hyperlinks on this DTIC website does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products or services contained therein. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the opinions of the United States DoD.