Laser Pulse Creates Frequency Doubling in Amorphous Dielectric Material

Home / Articles / External Non-Government

laserpulsecr

January 14, 2020 | Originally published by Date Line: January 14 on

Researchers have demonstrated a new all-optical technique for creating robust second-order nonlinear effects in materials that don”t normally support them. Using a laser pulse fired at an array of gold triangles on a titanium dioxide (TiO2) slab, the researchers created excited electrons that briefly doubled the frequency of a beam from a second laser as it bounced off the amorphous TiO2 slab.

By widening the range of optical materials useful for micro- and nanoscale optoelectronic applications, the work could give optical engineers new options for creating second-order nonlinear effects, which are important in such areas as optical computers, high-speed data processors, and bioimaging safe for use in the human body.

The appearance of external hyperlinks on this DTIC website does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products or services contained therein. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the opinions of the United States DoD.

Focus Areas