New Data on Laser-Plasma Instabilities Could Improve Predictive Models for Fusion Experiments

Home / Articles / External Non-Government


December 10, 2019 | Originally published by Date Line: December 10 on

ROCHESTER, N.Y., Dec. 3, 2019 — New research from the University of Rochester could lead to more accurate computer models for simulations of laser-driven implosions. Researchers at the the university’s Laboratory for Laser Energetics (LLE), along with their colleagues at Lawrence Livermore National Laboratory and the Centre National de la Recherche Scientifique, have demonstrated how laser beams modify the conditions of the underlying plasma as they move through it, affecting the transfer of energy in fusion experiments. 

In laser-driven inertial confinement fusion (ICF) experiments, short beams consisting of intense light pulses are used to heat and compress hydrogen fuel cells. Ideally, this process results in a greater release of energy than the amount of energy used to heat the cells.

Laser-driven ICF experiments require that many laser beams propagate through a plasma of free-moving electrons and ions to deposit their radiation energy precisely at their intended target. As the beams move through the plasma, they interact with it in ways that can complicate the intended result.

To accurately model the laser-plasma interaction, scientists need to know exactly how the energy from the laser beam interacts with the plasma. While researchers have offered theories about the ways in which laser beams alter a plasma, no theory has been demonstrated experimentally.

Focus Areas