Multi-Pulse Motor (MPM) Designed for Use with Electric Solid Propellants

Home / Articles / External Non-Government

NASA-Logo

April 6, 2016 | Originally published by Date Line: April 6 on

The solid rocket motor can be electrically pulsed a number of times to produce a required thrust or impulse bit.
The multi-pulse motor is a solid-propellant rocket motor that is able to produce a number of pulses for various thrust levels (5 to 30 pulses and thrusts between 0.25 and 1.5 N, depending on electric power delivery system) and can be turned on and off through the application of electrical power.
Electric solid propellants (ESPs) are new energetic materials that combust when supplied with electrical power. ESPs combust with the same or higher Isp (242 to 270 s at sea level) as conventional solid propellants, but are inherently safer, cheaper, and easier to handle. Unlike other energetic materials, ESP materials are inherently storable and safe, with sustained ignition only possible via the sustained supply of electrical power, and not by spark or flame. When a non-metalized ESP grain is fitted with electrodes and sufficient electrical power is applied, it ignites and continues to burn energetically until the electrical power is removed.
A key problem is that the geometry of the ESP grain changes because of the evolution of the propellant to exhaust gases, but a closed electrical circuit is required to keep the electrical power applied to the grain and continue burning. The chamber pressure is utilized in the multi-pulse motor design to ensure electrical contact is retained during the pulsing event.
By understanding the ambient density and electric field acting on the ESP in the thruster, the point of ignition can be determined, and utilizing the mechanical features of the thruster, the pulsing thrusts can be turned on and off electrically.

The appearance of external hyperlinks on this DTIC website does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products or services contained therein. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the opinions of the United States DoD.

Focus Areas