Scientists Develop Ultrafast Battery with Quarter-Million Cycle Life

Home / Articles / External Non-Government

phys_org_al-ion_ultra-fast_battery_quarter-mil_cycle_life_oc

January 11, 2018 | Originally published by Date Line: January 11 on

Aluminum-ion batteries (AIB) have significant merits of low cost, non-flammability, and high-capacity metallic aluminum anodes based on three-electron redox properties. However, due to its inadequate cathodic performance, especially in terms of capacity, high-rate capability, and cycle life, AIB still cannot compete with Li-ion batteries and supercapacitors.

To address these issues, a research team led by GAO Chao, a professor in Zhejiang University”s (ZJU”s) Department of Polymer Science and Engineering, has proposed a “trihigh tricontinuous (3H3C) design” to achieve the ideal graphene film (GF-HC) cathode with excellent electrochemical performances.

The ordered assembly of graphene liquid crystal leads to a highly oriented structure satisfying requirement. High temperature annealing and concomitant gas pressure contribute to high-quality yet high channeling graphene structure simultaneously. Owing to this targeted 3H3C design, the resulting aluminum-graphene battery (Al-GB) achieves an ultralong cycle life (91.7 percent retention after 250,000 cycles), unprecedented high-rate capability (111 mAh g−1 at 400 A g−1 based on the cathode), a wide operation temperature range (−40° to 120°C), unique flexibility, and nonflammability.

The appearance of external hyperlinks on this DTIC website does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products or services contained therein. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the opinions of the United States DoD.