Student Teams Compete in Service Academies Swarm Challenge – with GTRI Assistance

Home / Articles / External Non-Government


January 29, 2018 | Originally published by Date Line: January 29 on

What does the future of air-to-air combat sound like? At this point, it could sound very much like a swarm of angry bees.

That”s how researcher Michael Day described the recent DARPA Service Academies Swarm Challenge, which pitted mixed groups of up to 25 highly autonomous unmanned aerial vehicles (UAVs) on a side against one another in a next-generation version of the traditional “capture the flag” game. The friendly live-fly competition involved student teams from the U.S. Air Force Academy, the U.S. Military Academy, and the U.S. Naval Academy, with each team developing and testing their own innovative offensive and defensive tactics to conduct mock swarm-on-swarm battles.

Day, a research scientist at the Georgia Tech Research Institute (GTRI), co-led the support efforts required to stage the competition, working with the teams to help them operate the swarms, which included fixed-wing, propeller-driven Marcus UAV Zephyr aircraft and DJI Flame Wheel quadcopters. GTRI coached the teams and shared its simulation software to help the competitors develop tactics for both protecting their own space and invading another team’s base. Warren Lee, branch head for GTRI’s Unmanned Flight Operations, co-led the project with Day.

The competition was sponsored by the Defense Advanced Research Projects Agency (DARPA), which has a history of fostering competition to help advance cutting-edge technology. In addition to GTRI, the event was supported by the Naval Postgraduate School (NPS) and the Space and Naval Warfare Systems Command (SPAWAR). It was held in April 2017 at Camp Roberts, a California Army National Guard facility.

The vehicles were adapted from foam-wing radio-control hobbyist aircraft and rotorcraft designed to carry cameras. But these aerial vehicles were modified with computers that contained sophisticated autopilots, as well as separate computers that helped them coordinate with swarm teammates, locate opponents, and conduct offensive and defensive maneuvers — including aerial dogfights. 

But the tactics weren’t the only thing tested at the competition.

“A big challenge for us was logistical,” said Day. “Getting this many aircraft ready to fly and launched safely in the brief window of time we had required a lot of preparation.”

The competition was built on lessons learned from an earlier event that pitted GTRI researchers against colleagues from the Naval Postgraduate School. That competition involved swarms composed of ten highly autonomous unmanned aircraft — all of them the same type — on each team.